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Abstract-Through analysis by instrumental neutron activation (INAA) of 789 individual lithic fragments
from the 2 mm-4 mm grain-size fractions of five Apollo 17 soil samples (72443, 72503, 73243, 76283, and
76503) and petrographic examination of a subset, we have determined the diversity and proportions of rock
types recorded within soils from the highland massifs. The distribution of rock types at the site, as recorded
by lithic fragments in the soils, is an alternative to the distribution inferred from the limited number of large
rock samples. The compositions and proportions of 2 mm-4 mm fragments provide a bridge between
compositions of <1 mm fines and types and proportions of rocks observed in large collected breccias and
their clasts. The 2 mm-4 mm fraction of soil from South Massif, represented by an unbiased set of lithic

fragments from station-2 samples 72443 and 72503, consists of 71% noritic impact-melt breccia, 7%
incompatible-trace-element-(ITE)-poor highland rock types (mainly granulitic breccias), 19% agglutinates
and regolith breccias, 1% high-Ti mare basalt, and 2% others (very-low-Ti (VLT) basalt, monzogabbro
breccia, and metal). In contrast, the 2 mm-4 mm fraction of a soil from the North Massif, represented by an
unbiased set of lithic fragments from station-6 sample 76503, has a greater proportion of ITE-poor highland
rock types and mare-basalt fragments: it consists of 29% ITE-poor highland rock types (mainly granulitic
breccias and troctolitic anorthosite), 25% impact-melt breccia, 13% high-Ti mare basalt, 31% agglutinates

and regolith breccias, 1% orange glass and related breccia, and 1% others. Based on a comparison of mass-
weighted mean compositions of the lithic fragments with compositions of soil fines from all Apollo 17
highland stations, differences between the station-2 and station-6 samples are representative of differences
between available samples from the two massifs.

From the distribution of different rock types and their compositions, we conclude the following:
(1) North-Massif and South-Massif soil samples differ significantly in types and proportions of ITE-poor
highland components and ITE-rich impact-melt-breccia components. These differences reflect crudely
layered massifs and known local geology. The greater percentage of impact-melt breccia in the South-
Massif light-mantle soil stems from derivation of the light mantle from the top of the massif, which
apparently is richer in noritic impact-melt breccia than are lower parts of the massifs. (2) At station 2, the
2 mm-4 mm grain-size fraction is enriched in impact-melt breccias compared to the <1 mm fraction,
suggesting that the <1 mm fraction within the light mantle has a greater proportion of lithologies such as
granulitic breccias which are more prevalent lower in the massifs and which we infer to be older (pre-basin)
highland components. (3) Soil from station 6, North Massif, contains magnesian troctolitic anorthosite,
which is a component that is rare in station-2 South-Massif soils. (4) Compositional differences between
poikilitic impact-melt breccias from the two massifs suggest broad-scale heterogeneity in impact-melt
breccia interpreted by most investigators to be ejecta from the Serenitatis basin.

We have found rock types not previously recognized or uncommon at the Apollo 17 site. These include
(1) lTE-rich impact-melt breccias that are compositionally distinct from previously recognized "aphanitic"
and "poikilitic" groups at Apollo 17; (2) regolith breccias that are free of mare components and poor in
impact melt of the types associated with the main melt-breccia groups, and that, if those groups derive from
the Serenitatis impact, may represent the pre-Serenitatis surface; (3) several VLT basalts, including an
unusual very-high-K basaltic breccia; (4) orange-glass regolith breccias; (5) aphanitic-matrix melt breccias at
station 6; (6) fragments of alkali-rich composition, including alkali anorthosite, and monzogabbro; (7) one
fragment of 72275-type KREEP basalt from station 3; (8) seven lithic fragments of ferroan-anorthositic-suite
rocks; and (9) a fragment of metal, possibly from an L chondrite. Some of these lithologies have been found
only as lithic fragments in the soils and not among the large rock samples. In contrast, we have not found
among the 2 mm-4 mm lithic fragments individual samples of certain lithologies that have been recognized
as clasts in breccias (e.g., dunite and spinel troctolite).

The diversity of lithologic information contained in the lithic fragments of these soils nearly equals that
found among large rock samples, and most information bearing on petrographic relationships is maintained,
even in such small samples. Given a small number of large samples for "petrologic ground truth," small
lithic fragments contained in soil "scoop" samples can provide the basis for interpreting the diversity of rock
types and their proportions in remotely sensed geologic units. They should be considered essential targets
for future automated sample-analysis and sample-return missions.
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INTRODUCTION AND BACKGROUND

What would we know about the rock types and geology of the

surface of the Moon if the only samples we had were of the soils

and small lithic fragments contained therein? As a precursor to
future automated sampling or reconnaissance missions, we must

determine how best to sample an area and what can be learned from

different kinds of samples. Because of the diversity of rock types

present and the complex geology of the site, the Apollo 17 landing

site is ideal for comparing different kinds of sampling, such as

remote sensing, direct chemical analysis of soils, and petrographic

observations and chemical analysis of rocks of hand-sample size. In

this paper, we (1) present compositional and petrographic

information obtained on a large number of 2 ram-4 mm lithic

fragments in soils collected from North- and South-Massif sampling

stations, (2) determine the proportions of rock types represented in

each soil, (3) compare the lithologic diversity and distribution

between soils from the two massifs, and (4) compare the lithologic

diversity of the 2 mm_l mm fragments to that determined from

large-rock samples, soil fines (< 1 mm), and remotely-sensed data,

The Apollo 17 site is on the southeastern rim of the Serenitatis

basin at the join of a bay of basaltic mare and tall massifs of

highland material that form the Taurus-Littrow Valley (Fig. 1).

From careful sampling by the Apollo 17 astronauts along traverses

totaling 31 km and return of 120 kg of rock and soil, the major rock

types present in the area are known. The floor of the Taurus-

Littrow Valley is underlain by high-Ti mare basalt and covered by a

thick (10 m-15 m) regolith that is intermixed with pyroclastic

orange and black glass. High-Ti mare basalts dominate the regolith

from the valley floor, but the regolith also contains a significant

amount of highland material (e.g., 8(/0-35% of the < 1 mm soil;

Korotev and Kremser, 1992).

The Taurus-Littrow Valley is bordered by highland massifs

consisting of incompatible-trace-element-(ITE)-bearing, noritic

impact-melt breccias; ITE-poor feldspathic granulitic breccias; and

some igneous rocks (Fig. 2). Many samples of impact-melt breccia
were obtained from boulders near the base of the massifs. Most

previously analyzed melt breccias fall into two compositionally

N Mare Serenitatis

/_$17.147.22486

FIG. 1. Oblique view of the Apollo 17 landing site looking west (after
NASA photo AS17-147-22466). Station 2 is at the base of South Massif,
station 3 is on the "light mantle," and station 6 is on the lower slope of
North Massif. The "×" marks the location of the LM.

similar groups: the more abundant poikilitic-matrix breccias,

presumably formed by the Serenitatis impact (Dymek et aL, 1976;

Cadogan and Turner, 1976; Winzer et al., 1977; Spudis and Ryder,

1981), and the aphanitic-matrix breccias, which are thought by some

to be Serenitatis melt breccia (Wolfe et al., 1981; James et aL, 1978;

Spudis, 1992) and by others to be unrelated to the Serenitatis event

(Spudis and Ryder, 1981 ; Ryder, 1992b). In this paper, we presume

that the Serenitatis impact formed the poikilitic-melt breccias of the

massive boulder type; however, a Serenitatis origin for these

breccias has not been proven.

Other lithologies are generally less coherent than the impact-

melt breccias and are mainly represented by small rocks and lithic

fragments in the soils, although they also occur as clasts in the melt

breccias. They are dominated by feldspathic granulitic breccias but
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FIG. 2. Interpretive cross section of Taurus-Littrow Valley after Fig. 242 of Wolfe et al. (1981). Dashed lines denoting possible fault surfaces and
preexisting massif "wedges" that now constitute col luvium in the valley represent just one possible interpretation of the origin of the massif slopes (Wolfe et
aL, 1981). The arrow labeled "surge" represents the formation of the light mantle deposit from a secondary impact from Tycho at the top of South Massif
(Luchitta, 1992).
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also include norite, troctolite, dunitc, and anorthositic gabbro of

igneous origin. Fcrroan anorthosite, such as that which is prevalent

at the Apollo 16 site, is extremely rare (LSPET, 1973; Wolfe et al.,

1981; James, 1992). A "light-mantle" surge deposit caused by a

secondary impact from Tycho near the top of South Massif now lies

at the base of the massif slope (Arvidson et al., 1976; Luchitta,

1992). Tycho secondaries are also responsible for the cluster of

large craters that dot the valley floor (I,uchitta, 1977). Soil samples

var3r in composition about the site, and this diversity can be related

to the site geology and subsurface distribution of the major rock

types (Rhodes et aL, 1974; Korotev and Kremser, 1992).

The most intensely studied samples from Apollo 17 have been

the rocks (>1 cm) and the "fine fines" (<1 mm sieved soils). For

several reasons, we focus in this work on a relatively neglected

subset of the samples, the 2 ram-4 mm grain-size fraction of the

regolith. (I) There is a statistically significant number of 2 mm-4

mm particles in most returned rcgolith samples. Typically 2°/'0-3%

ofthe mass of <1 cm material is in the 2 mm_l mm size range, and

a 5 g sample of 2 ram-4 mm particles contains -200 fragments,

compared to -30 in a 5 g sample of 4 mm-10 mm particles. (2)

Mass-balance models for <1 mm soil indicate a different

distribution of constituent rock types in the soft than is found among

the returned large rocks (Korotev and Kremser, 1992). Thus, we

might expect the distribution of lithologies in several hundred 2

ram-4 mm particles to be more representative of the site or a

sampling station than the relatively small number of returned rocks.

(3) ,,ks we show below, the 2 mm_l mm particles are generally large

enough to provide polymineralic assemblages that are representa-

tive, compositionally and pctrographically, of the rocks from which

they derive. In contrast_ the I ram-2 mm grain-size fraction

contains a larger proportion of individual mineral fragments

(Blanchard et al., 1975; Ryder et al., 1988). (4) Unusual and

interesting lithologies can be expected among the 2 mm J, mm

particles because of the large number of such particles and because

vertical and lateral mixing from meteorite impacts has introduced

some cxotic material.

The amount of data obtained for the project described here is

large (e.g., concentrations of 28 elements in more than 800 samples,

major element data for 93 samples, and petrographic observations,

in thin section, of 95 samples). This report provides an overview of

the study and concentrates on differences in distribution and

compositions of lithologies between the two massifs and the

relationship of the 2 ram-4 mm grain-size fraction to the < 1 mm

fines. We have also obtained much new information about specific

rock types (Jolliff and Bishop, 1993; Rockow et al., 1994a, b;

Korotev et al., 1995a; Jolliff et aL, I995); details of results for

particular subsets of the samples will appear in subsequent papers.

DATA SOURCES AND COLLECTION

Soil Samples and Genealogy

Most of the regolith samples that were collected with scoops (as

opposed to coring equipment) during the Apollo 17 mission were

passed through sieves with mesh sizes of I, 2, 4, and 10 ram.

Collectively, the subcentimeter material has been regarded as

"fines" or "soil" and designated 7Sxx0, where S usually designates

the station number and the terminal zero indicates unsieved fines.

Most regolith studies have been based on the <1 mm fines ("fine

fines"), designated 7Sxxl. The 2 mm-4 mm fractions are desig-

nated 7Sxx3. We have analyzed a total of 789 lithic fragments by

instrumental neutron activation analysis (INAA) from the following

samples: 72443, 72503, 73243, 76283, and 76503. We assigned

each particle analyzed by INAA a sequential designation ",7xxx"

beginning with ,7001, and we associate this number with any

corresponding chips in thin sections and fuscd beads.

We received a 5 g split for each sample except 72443 (2 g). The

allocated splits were an unbiased subset of all material in the

respective grain-size fractions, and we have analyzed all the

allocated matcrial from 72443, 72503, and 76503. We have

reserved _10 particles from 76283 and _30 particles from 73243, all

of which appear to be melt breccias, for future analysis.

Samples 76283 and 76503 were collected at station 6 (Fig. 3a),

which is located 250 m upslope from the base of the North Massif.

The most prominent feature at station 6 is a cluster of five melt-

breccia blocks (3 m-10 m in size) that lie at the end of a single

boulder track. Sample 76283 is from the 2 cm-5 cm depth interval

in the regolith .just north and beyond the overhang of boulder block

4. Sample 76503 was collected _25 m to the west of the boulder

cluster and is from the upper few centimeters of regolith in the

ciecta blanket of a small crater (Wolfe et al., 1981). Wc selected

sample 76503 as one that would be representative of the regolith on

the lower part of North-Massif slopes, unaffected by comminution

or shedding of material off the boulder blocks. Samplc 76283 was

selected as one that might potentially show the effects of material

added to the local soil by breakup of the boulder. Corresponding

< 1 mm soil samples 76281 and 76501 are submature with Is/FeO =

45 and 58, respectively (Morris et al., 1983). Both of these samples

(76280, 76500) contain admixed mare-basalt and orange/black-glass

debris from the valley floor (Heiken and McKay, 1974; Wolfe et al.,

1981).

Samples 72443 and 72503 were colIected at station 2 (Fig. 3b),

which is at the base of the South Massif on the rim of the 1 km

diameter Nansen Crater. Most station-2 samples were taken from or

near three small boulders. Sample 72443 is from the upper 4 cm of

soil under boulder 3, collected after the astronauts overturned the

boulder (Wolfe et al., 1981). Sample 72503 is from the upper 4 cm

of regolith _5 m from boulder 2. We expected sample 72503 to

represent the local soil that was least affected by addition of boulder

material and sample 72443 to be potentially enriched in boulder

material. Corresponding <1 mm fines, 72441 and 72501, are

mature, Is/FeO = 68 and 81, respectively (Morris et al., 1983).

Station 3 (Fig. 3c) is at the base of the Lee-Lincoln scarp and 50

m east of Lara crater. Sample 73243 is from the upper 5 cm of a

trench sequence taken on the rim of a 10 m crater (Wolfe et al.,

1981), The corresponding <1 mm fines,__7.32_4|__are immature,

Is/FeO = 18 (Morris, et al., 1983). Both stations 2 and 3 are on top

of the light mantle, which is a tongue of highland material extending

from the base of South Massif midway across the valley floor.

Although station 3 is several kilometers from the base of South

Massif, it lies on South-Massif material (light mantle); thus, we

refer to station-2 and station-3 samples collectively as South-Massif
material.

Analytical Techniques

Instrumental Neutron Activation Analysis (INAA)-Each 2 ram-
4 mm lithic fragment was bathed ultrasonically in acetone, then examined
and tentatively classificd under a binocular microscope prior to wcighing
and sealing in ultra-pure silica tubing for neutron irradiation. To provide an
unbiased accounting of the mass balance, all fine (<2 ram) material
produced during shipping, washing, and handling of the particles was also
analyzed; these "abrasion fines" amounted to 4%-8% of the allocated
sample mass. Two or more samples of the corresponding <! mm fines
samples (7Sxxl) were also analyzed for each soil. The lunar particles and
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FiG. 3. Planimetric maps of(a) station 6, (b) station 2, and (c) station 3 after
figures 146, 72, and 98, respectively, of Wolfe et aL (1981). Samples
analyzed in this work are in italics and underlined, these include 76283,
76503, 72443, 72503, and 73243.

fragments of synthetic glass standards were irradiated in batches of _I00
particles for 24 h with a thermal neutron flux of _5 x 10 _3 cm-2 s-_. We
radioassayed samples and standards three times: at 6 days, 7-11 days, and
26-31 days after irradiation. The INAA methods are described by Korotev
(1991).

Fused Beads, Thin Sections, and Electron Microprobe Analysis
(EMPA)-After INAA, 88 particles from 72503 and 76503 were selected for
major-element analysis by EMPA-FB (electron microprobe analysis of
fused beads) by the mcthod of Brown (1977). Individual lithic fragments
typically weighing 10 mg-20 mg were first ground with an alumina mortar
and pestle under acetone. Powders were then fused on a Mo-strip rcsistance
heater under Ar at atmospheric pressure. Fifty-one of the samples from
72503 and 76503 selected for fused bead analysis were first split for thin
sections. Our procedure is as follows: the entire fragment is encased in
water-soluble Crystal Bond+- and sawn in half using a diamond wafer blade.
The Crystal Bond,+, is dissolved in hot distilled water and the rock chips
rinsed in acetone. Half of each fragment is made into a polished thin
section and the other half is used to prepare a fused bead. Wavelength-
dispersive EMP analyses of fused beads are done at 15 kV accelerating
voltage and +30 nA beam current with a broad beam (30 pm-50/_m) using
the JEOL733 at Washington University, St+ Louis. A minimum of 6 spot
analyses are done on each bead. Concentrations of FeO, CaO, Cr203, and
Na20 determined by INAA and by EMPA-FB on the same samples compare
well (usually within +3%, relative, for CaO, 5% for FeO and Na20, and
10% for Cr203). Concentrations of Na20 determined by EMPA-FB are

systematically low by +5%, presumably due to volatilization during fusion.
Concentrations of FeO determined by EMPA-FB are systematically low by
+4%; however, if we estimate the portion of Fe present as metal based on Ni
concentrations, subtract it from FeO by INAA, and then compare the two
values, FeO by EMPA-FB is within 2% of values by INAA (see also
Korotev, 1990). We attribute this to preferential loss ofFc f_by reaction with
Mo during fusion of the sample powder.

RESULTS

The 2 mm-4 mm particles found in the regolith at the South and

North Massifs are highly varied in composition. For the most part,

they correspond to lithologies known from the collection of large

rocks. Despite their small mass, the 2 ms-4 mm fragments are

generally large enough to be representative of a particular lithology.

The assignment of lithologies and the distribution of compositions

for the particles are shown on plots of Sc vs. Sm (Figs. 4a, 5a, and

6a). Both Sc and Sm are determined with high precision by our

INAA procedures (relative standard deviation of <2%). The

pyroxenes, particularly cfinopyroxene, concentrate Sc, so the Sc

concentration of a lithic fragment distinguishes plagioclase-rich

highland lithologies from pyroxene-rich mare basalts. The Sm

concentration, representative of ITE concentrations, distinguishes

impact-melt breccias from lTE-poor highland lithologies and from

mare-basalt fragments. The distribution of compositions is also

shown in terms of major elements in plots of CaO vs. FeO (Figs. 4b,

5b, 6b).

We base the assignment of rock type of individual lithic
fragments on a combination of binocular-microscope observations,

examination of petrographic thin sections of a subset of the

fragments, and chemical compositions. Compositions of a repre-

sentative subset of individual lithic fragments are given in tables in

the appendix. Mass-weighted mean compositions for all of the

2 ram-4 mm particles in unbiased splits of samples from station 2

(72443, 72503) and station 6 (76503) are given in Table I and

compositions for specific groups of samples are given in Tables 2-

4. For comparison, compositions of previously characterized

Apollo 17 samples from all sample stations, taken from the litera-

ture, are shown in Fig. 7. In the following sections, we summarize

some of the specific characteristics that distinguish the rock types

we have found among the 2 mm-4 mm lithic fragments, and we

place them in the context of known Apollo 17 rock types by first

giving a short summary of similar rock types reported in the
literature.
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station 6, North Massif. Data include 243 particles from 76503 and 149
particles from 76283. (a) Concentrations of Sc vs. Sm. (b) FeO vs. CaO.
"Others" include alkali anorthositc (1.3 ug/g Sc, 0.7 wt% FeO), felsite (21
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< 1 mm split corresponding to 76503. Symbols explained in (a) apply also
to (b).

Regolith Breccias and Agglutinates

Many of the particles in each sample are regolith breccias and

agglutinates that have compositions very similar to the correspond-

ing < 1 mm fines (Figs. 4-7). These are mostly dark, glassy-matrix,

clast-rich breccias but also include breccias that were lithified by

compaction. In thin section, these contain recognizable regolith

components, such as spheres and broken fragments of glass, and a

wide variety of lithic and mineral clasts. Compositionally, they are

also distinguished by high Zn concentrations compared to particles

consisting largely of crystalline material (e.g., Table 3). Because

the <1 mm fines from each Apollo 17 sampling station are

compositionally distinct from those of other stations (Korotev and
Kremser, 1992), the compositional similarity between the regolith

breccias CI'able 3) and the corresponding <1 mm fines (Table 1)

indicates that most of the regolith breccias and aggh,tinates were

formed locally during induration of soil by impact of micro-
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meteorites (see also Simon et al., 1990; Blanchard et el., 1975). At

station 6, however, 25%-30% of the regolith-breccia particles are

compositionally distinct from the main cluster (e.g., Fig. 4) and

from the corresponding < 1 mm fines; these breccias may have been

produced in a regolith of different composition than that presently

existing at station 6. For example, those regolith-breccia particles

with high Sc concentrations (>35/_g/g, e.g., 76503,7027, Table A4)

are similar in composition to soils to the east (stations 7, 8, and 9)

and reflect a higher proportion of admixed basalt near the interface

of the base of North Massif and the basaltic valley floor. Similarly,

_15% of the regolith-breccia particles from the South Massif are

sufficiently dissimilar to the soils of stations 2 and 3 that they were

probably not formed in soil of this composition (e.g., Figs. 5, 6).

Many have higher concentrations of Sc and were probably formcd

closer to the interface of the light mantle and the basaltic valley
floor.
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FiG. 6. Compositions of lithic fragments from sample 73243, station 3,
South Massif. Data include 106 particles from 73243. (a) Concentrations
of Sc vs. Sm (b) FeO vs. CaO. "Others" include a metal-rich particle (9
,ug/g Sc, 18.9 wt% FeO), gabbroic breccia (24 /_g/g Sc, 8% FeO), and
KREEP basalt (49 ug/g Sc, 15.2% FeO). Symbols explained in (a) apply to
(b) and are the same as in Fig. 4. Thin intersecting lines mark the
composition of 73241 < l mm fines.

Because the regolith at station 6 contains subequal amounts of

each of the major lithologies found at the site, including mare basalt

and orange glass, station-6 regolith breccias plot toward the center

of the distribution of rock compositions on most two-element plots

(Fig. 4a). In addition to regolith breccias that have compositions

similar to the local soil and those that have more basaltic composi-

tions, some regolith breccias at station 6 consist only of ITE-poor

highland components (e.g., 76503,7047 and 76503,7129, Table

A4). These breccias lack mare components (e.g., low Sc

concentrations) and, thus, may predate the eruption of mare basalts

on the valley floor. They are discussed in more detail in the

following section.

Incompatible-Trace-Element-poor Highland Rock Types

Ilighland granulitic breccias and monomict igneous rock types

occur in the Apollo 17 sample collection as small rocks, as clasts in

melt breccias, and as fragments in the soils. Among the returned

rocks, less than 10 of these types have masses exceeding 50 g. The

TABLE I. Mass-weighted mean compositions of 2 mm-4 mm
particles and corresponding < 1 mm soil.

72441 72443 72501 72503 76501 76503
< 1 mm 2-4 mm < 1 mm 2-4 mm < 1 mm 2-4 mm

Na20 0.47 0.57 0.45 0.55 0.38 0.45
CaO 13.0 12.0 13.1 12.3 12.4 12.8

Sc 19.6 20.0 18.9 16.7 27.6 24.5
Cr 1568 1553 1495 1396 1814 1553

FeO 8.99 9.32 8.52 8.36 10.30 9.01

Co 30.5 32.4 27.6 30.0 33. I 26.4
Nii 267 283 250 262-270 206 176
Zn I 31 24 26 18 40 24 35

Rb 4 7 6 7 6 5

Sr 150 160 143 159 127 160
Zr I 248 359 248 370 152 190-202

Cs l 0.18 0.22 0.16 0,22 0.12 0.17-0.18

Ba 209 271 209 283 122 140
Ira 18.5 25.1 17.3 26.0 9.00 11,5

Ce 48.2 64.7 45.4 67.1 24.8 30.6
Nd 28.4 38.0 26.5 39.0 I5.7 19.0

Sm 8.89 11.71 8.45 I 1.9 5.63 6,43

Eu 1.36 1.57 1.32 1.59 1.26 1.37
Tb 1.85 2.36 1.76 2.40 1.25 1,40

Yb 6.52 8.51 6.16 8.57 4.54 5.16
Lu 0,91 1.15 0.86 1.17 0.64 0.71

Hf 7.0 9.0 6.5 9.4 4.6 5.3
Ta 0.90 1.17 0.86 1.20 0.69 0.79
lr 1 8.6 7.8-8.2 7.9 7.6-8.1 6.8 6.2-7.5

Au 1 5,5 4.1-4.4 3.8 3.9-4.2 2.9 2.4-4.9

Th 3.0 3.9 3.0 4.2 1.44 1.94
U 0.82 1.08 0.82 1.2 0.39 0.57-0.64

mass (mg)
175 1985 305 4888 307 4941

Concentrations ofNa20, CaO, and FeO in wt%, Au and Ir are in
ng/g, and all others in/_g/g. Mass-weighted mean composition of
2 ram-4 mm lithic fragments from sample 72503 excludes the
composition of metal-rich particle 72503,7052 (see Table 5).

1Where a range is given, some of the individual samples had
concentrations below our detection limits. For the range given,
the lower average concentration value was calculated using a
concentration of zero for those samples in which concentrations
were below detection, making this a lower limit. The higher
value was calculated using the mean composition of only those
samples for which a concentration value was obtained, yielding
an upper limit.

majority of the igneous rocks belong to the magnesian suite; only a

few small samples have ferroan or alkaline mineral compositions

(e.g., Warren et aL, 1991), although some of the well-studied lunar

granites were found as clasts in boulders of station 2 (Ryder et al.,

1975b) and station 3 (James and Hammarstrom, 1977). Of the

magnesian-suite igneous rock types, troctolites and norites are most

abundant and are about equally represented. Granulitic breccias are

also abundant. They have compositions ranging from noritic/

gabbroie anorthosite to anorthositic gabbro and, based on values of

whole-rock Mg' [molar MgO/(MgO + FeO)], have been divided into

a magnesian group and a less abundant ferroan group (I,indstrom

and Lindstrom, 1986).

Among the 2 mm-4 mm fragments, we find granulitic brcccias

in samples from both massifs, although they are relatively more

abundant in the North-Massif samples (Figs. 4a, 5a). Most appear

as nonvesicular, light-colored, recrystallized breccias under the

binocular microscope. In thin section, their textures range from

fine- to medium-grained, and are partially recrystallized, with
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TABLE2. Mass-weighted mean compositions oflithologic groups (intergroup comparisont).

lTE-poor Highlands MareImpact Melt Breccia

Mag Ferroan Troct Ferroan Polk Aphan ITE- Basalt Basalt Basalt Basalt Other 3 VLT Orange
Gran Gran Anorth Anorth Matrix 2 Matrix rich (A) 031) 032) (C) Basalt Basalt GI Bx

Na20 0.37 0.34 0.33 0.41 0.65 0.51 0.65 0.41 0.39 0.41 0.35 0.31 0.20 0.49
CaO 15.0 15.0 16.2 18.4 11.5 12.5 ]1.4 I1.1 10.9 11.3 10.8 11.2 ti.8 8.0

Sc 7.5 12.4 1.0 2.2 16.9 16.7 19.7 80.0 81.9 86.9 82.8 68.5 62.5 46.5
Cr 784 884 322 125 1342 1463 1397 2847 3736 2541 4317 3556 3121 4468

FeO 5.08 6.26 1.73 1.11 8.99 8.02 9.46 19.2 19.1 19. 5 18.2 18.0 17.0 21.9
Co 34.1 28.7 11.3 2.4 3 t .8 28.1 25.7 19.0 20.6 20.8 25.9 27.7 28.5 595
Ni 449 362 23 12-15 298 207 190 15-34 15-24 19-38 20 43 34-99 1315

Zn 7-8 1-3 2 2 17 17 22 ...................... 222

Rb 3 2 I 1 7 8 14 7 5 5 6 4 74 6
Sr 151 145 163 179 169 146 160 184 145 140 135 110 37 210

Zr 45 40 6 36-40 465 414 725 282 184 216 169 112 32 190

Cs 0.I0 0.06 0.05 0.01-0.02 0.22 0,27 0.61 0.10-0.I4 0.10-0.11 0.04-0.11 0.06 0.08-0.11 0.04-0.1 a 0.10-0.20
Ba 59 43 48 30 340 319 504 81 69 74 63 75 28 a 84

La 3.41 3.1 2.02 2.47 32.1 30.5 51.9 6.83 4.72 6.08 5.33 4.78 1.93 6.57
Ce 8.7 8.1 4.8 6.3 82.8 78.4 134 23.7 16.0 19.5 16.8 14.3 5.3 19.7

Nd 4.9 4.9 2.7 4 48.6 43.0 77.9 23.5 17.8 I7.5 16.8 15.0 4.8 19.1
Sm 1.49 1.52 0.71 1.13 14.7 13.7 23.2 10.8 7.83 7.69 8.43 5.45 ].28 6.81

Eu 0.84 0.79 1.08 0.96 1.89 1.4 1.92 2.19 1.81 1.58 1.61 1.09 0.39 1.78
Tb 0.33 0.34 0.12 0.22 2.95 2.74 4.65 2.82 2.12 2.04 2.19 t.43 0.35 1.50

Yb 1.54 1.45 0.35 0.73 10.4 9.74 16.3 10.4 7.97 7.8 7.96 5.33 1.98 4.49
Lu 0.22 0.20 0.04 0.10 1.42 1.32 2.20 1.44 1.12 1.09 1.12 0.75 0.29 0.61

tlf 1.2 1.0 0.2 0.9 I 1.6 10.3 17.7 9.8 8.0 7.2 7.9 4.7 1.0 5.9
Ta 0.21 0.12 0.02 0.08-0.1 1.49 1.24 2.09 1.85 1.53 1.58 1.51 0.74 0.09 1.03

lr 21.0 14.1 0.1-0.2 0.3-0.4 7.7-8.1 5.5 4.2-4.4 1.1-2.3 1.2-2.0 1.5-2.8 1.5 1.7-2.4 0.26 1.0 2.5-55

Au 6.9-8 5.3 0.2-0.5 0.2 4.8-5.0 3.5 2.9-3.2 1.1-2.3 0.I-1.0 0.2-0.8 0.7-3.0 0.8-3.0 0.1-1.6 1.55
Th 0.90 0.64 0.11 0.37 5.07 5.06 8.64 0.29 0.18 0.32 0.18 0.32 0.23 0.64

U 0.27 0.2 0.03 0.08 1.39 1.39 2.35 0.14-0.20 0.18-0.21 0.21-0.35 0.15 0.0(_0.08 0.12-0.14 0.23

# 48 7 35 7 189 32 31 24 7 15 2 3 5 4
mass 1390 130 713 252 4510 751 649 740 260 381 126 88 138 136

I CompoSlilons are averages for iithic fragments from samples 76503, 76283, 72503, 72443, 73243. In general, the groups listed have a very limited
compositional range (i.e., each group represents a distinct lithology). Exceptions include the aphanitic and ITE-rich melt breccia groups, which have
distinctive but diverse compositions, and troctolitic anorthosite, which is a group of related mineral fragments and breccias that form a compositional trend
rather than a cluster. Most groups are also well characterized (i.e., many particles per group and lithology can be assigned with confidence based solely on
INAA data). Exceptions include the ferroan anorthosite particles and some of the basalt particles, which require detailed petrographic work to confirm
specific lithologic assignment. Concentrations ofNa20, CaO, and FcO are in wt%, lr and Au are in ng/g, and the remainder are in/xg/g.
2 >Average composition includes only particles with Sm 12tttg/g.
3 Average of the three basalt particles labeled "other" in Fig. 13.
4 Excludes sample 76503_7040, which has anomalously high concentrations of alkali elements (Rb = 31/_g/g, Cs = 1.5 ug/g, Ba = 264 _tg/g).
5 Excludes sample 76503,7024, which has high concentrations of siderophile elements (Ni = 790/.tg/g, Ir = 33 ng/g and Au = 7 ng/g).
For explanation of compositional ranges, see Table 1.
Mag = magnesian, Gran = granulite, Anorth = anorthositic, Troct = troctolite, Polk = poikilitic, Aphan = aphanitic, GI = glass, Bx = breccia,
..... no value, # = number of particles averaged, mass = combined mass (rag) of particles averaged.

vestiges of relict igneous texture to strongly granoblastic.

Compositionally, they typically have moderate to high concentra-

tions of CaO (13.5'/o-16.5%) and siderophile elements (Ni = 450

/tg/g on average), and relatively low concentrations of Sc (<16

/tg/g) and Sm (<3 #g/g) (Fig. 8, Tables 2 and A2). Compared to

impact-melt breccias, they have high Ir concentrations and lr/Au

values. They form a relatively tight cluster on most two-element

diagrams, although a few, labeled "anorthositic granulites" in Fig. 8,

are compositionally distinct (e.g., they have higher CaO and lower

Cr concentrations). The Sc-Sm ratio and Mg' distinguish the

ferroan and magnesian subsets of granu!itic breccias (Fig. 8b, Table

A2). There are relatively few fcrroan granulitic breccias; all but one

of those we have found are from North-Massif samples.

Few of the 2 ram-4 mm lithic fragments have igneous texture

and compositions suggesting pristinity. The station-6 samples have

the highest proportion of igneous fragments, but they are mostly of

one lithology, magnesian troctolitic anorthosite (Jolliff et al., 1992).

This group of fragments comprises coarsely crystalline plagioclase,

plagioclase + olivine (--_orthopyroxene), and brecciated equivalents

(Table AI). Members of this group form a tight trend (Fig. 8a) or

cluster (Fig. 4a) on most two-element diagrams. The mass-weighted

mean composition of these particles corresponds to troctolitic

anorthosite; these are very similar in mineral chemistry to well-

studied troctolite 76535 (Haskin et al., 1974; Dymek et al., 1975).

Igneous fragments of the magnesian suite are scarce in the South-

Massif samples; only one monomict norite fragment was found.

Two lithic fragments (72503,7041 and 73243,7087) have lTE-poor

compositions but relatively high Sc concentrations (_25 #g/g) and
appear to be gabbroic breccias. One lithic fragment (76283,7119) is

a fragment of alkali anorthosite (Fig. 8), the first such sample found

in the Apollo 17 collection.

Seven lithic fragments (three from 72503, two from 73243, and

two from 76283) have compositional characteristics similar to those

of Apollo 17 ferroan-anorthositic samples whose Fe/Mg values are
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TABLE 3. Mass-weighted mean compositions oflithologic groups (interstation comparison).

Magnesian Granulitic Breccias Poikilitic Melt Breccias, Matrix-Rich I Regolith Breccias and A_gglutinatcs

72503 73243 76503 76283 72443 72503 73243 76503 762832 72443 725033 73243 76503 762834

Na20 % 0.38 0.37 0.37 0.37 0.68 0.63 0.62 0.69 0.69 0.46 0.46
CaO % 14.7 15.0 15.0 I5.2 11.3 11.5 11.1 I1.2 11.2 12.8 12.4

Sc /zg/g 7.3 6.8 8.4 7.5 17.8 17.2 17.3 15.8 16.1 21.9 18.4

Cr ktg/g 788 740 830 781 1390 1365 1359 1283 1305 1668 1512

FcO % 5.02 4.57 4.96 5.52 9.24 9.02 9.10 8.77 9.19 9.43 8.30

Co /tg/g 29.0 26.8 29.6 44.5 35.4 31.5 33.1 24.4 15.9 31.0 28.2

Ni _g/g 372 336 362 617 333 292 314 211 107 254 233

Zn /_g/g 8 8 3-8 9 20 16 19 19 18 37 28

Rb /zg/g 3 2 3 3 6 7 7 7 8 6 6

Sr /tg/g 148 157 155 146 167 165 167 174 183 153 155

Zr /zg/g 44 50 43 44-48 468 450 477 481 487 243 252

Cs /zg/g 0.09 0.08 0.18 0.07 0.17 0.20 0.24 0.28 0.26 0.20 0.20

Ba /_gtg 65 55 61 56 332 335 347 346 344 188 199

La ,ug/g 3.62 3.30 3A9 3.37 32.8 31.5 32.4 32.7 32.8 16.6 17.3

Ce ,ug/g 9.3 8.4 8.9 8.5 84.2 81.3 84.I 84.5 85.3 43.7 45.3

Nd ttg/g 5.3 4.9 5.0 4.8 49.8 47.4 49.5 50.0 49.5 25.3 25.9

Sm ,ug/g 1.57 1.46 1.53 1.46 15.1 14.5 14.8 15.0 15.0 8.15 8.20

Eu ktg/g 0.83 0.84 0.85 0.86 1.88 1.84 1.82 2.01 2.03 1.34 1.29

Tb /_g/g 0.35 0.32 0.35 0.33 2.99 2.90 2.99 3.00 3.05 1.69 1.68

Yb /zg/g 1.65 1.46 1.64 1.48 10.7 10.2 10.5 10.6 10.7 6.11 6.07

Lu tt_g 0.23 0.20 0.23 0.21 1.44 1.40 1.44 1.45 1.47 0.84 0.84

Itf /_g/g 1.3 1.3 1.3 1.2 11.6 11.4 11.6 11.8 11.8 6.4 6.5

Ta /_g/g 0.23 0.25 0.20 0.18 1.54 1.48 1.50 1.50 1.52 0.86 0.84

lr ng/g 15.9 14.4 16.7 30.9 8.6 7.5 8.8 5.2-6.2 1.9-2.6 8.4 7.6

Au ng/g 5.6-6.0 5.4-5.9 5.7-8.1 9.3-11 5.4 4.6 5.5 3.4-4.1 1.7-2.1 3.8 3.0

Th _g/g 1.02 0.96 0.88 0.81 5.08 4.99 5.31 5.12 5.16 2.78 3.00

U klg/g 0.29 0.28 0.26 0.25 1.36 1.37 1.42 1.44 1.37 0.74 0.82

0.46 0.42 0.42

12.8 11.9 12.4

20.3 27.8 30.8

1534 1972 1960

8.78 10.98 11.09

28.9 35.4 32.1

241 239 218

37 52-54 52

6 5 5

156 164 156

237 170 182

0.17 0.15 0.12

177 119 123

15.2 9.53 10.1

40.2 25.7 27.6

23.5 17 17.9

7.54 5.85 6.33

1.30 1.32 t .33

1.59 1.3 1.44

5.67 4.73 5.17

0.78 0.66 0.72

6.1 5.0 5.3

0.79 0.74 0.81

8.3 8.5 7.3

4.1 2.9 2.6

2.51 1.51 158

0.71 0.44 0.43

No. particles I 1 9 11 15 22 84 23 38 11 31 57 27 96 65

Z mass (mg) 283 305 284 482 611 226 471 693 228 464 762 614 1447 1640

1 Only particles with Sm > 12,ug/g included in average.
2 Two siderophile-element-rich melt breccias were excluded from the average: 76283,7142 (Co = 244/tg/g, Ni = 3080 ,ug/g, lr = 66 ngJg, Au = 53 ng/g)

and 76283,7152 (Co = 165 ,ug/g, Ni = 1910 ug/g, lr = 58 ng/g, Au = 35 ng/g).
3 S iderophile-element-rich agglutinate 72503,7010 (Co = 79/_g/g, Ni = 1260,ug/g, Ir = 56 ng/g, Au = 13 ng/g) excluded from average.
4 S iderophile-element-rich breccia 76283,7112 (Co = 221/_g/g, Ni = 2990,ug/g, Ir = 151 ng/g, Au = 49 ng/g) excluded from average.

For explanation of compositional ranges, see Table 1.

TABLE 4. Mass-weighted mean major-element compositions oflithologic groups from 76503 and 72503.

Magnesian Granulites Ferroan Poikilitic Melt Breccia Aphanitic Melt Breccia ITE-rich Melt Breccia Orange
Granulites Matrix-rich Matrix-rich Glass Bx

76503 72503 76503 76503 72503 76503 72503 76503 72503 76503

SiO 2 45.0 44.4 44.5 46.4 46.4 46.6 46.3 47.8 47.0 39.2

TiO 2 0.22 0.25 0.22 1.57 1.59 0.66 0.65 1.91 1.36 8.40

AI203 26.7 25.7 25.7 17.6 19.13 21.8 22.3 16.5 17.9 7.21

Cr_O 3 0.12 0.13 0.12 0.20 0.19 0.18 0.20 0.20 0.21 0.69

FeO 452 5.13 6.70 8.91 8.31 7.39 6.78 9.83 10.1 21.3

MnO 0.07 0.07 0.09 0.12 0.12 0.10 0.09 0.13 0.14 0.26

MgO 7.49 8.83 6.18 12.7 11.5 8.6t 10.0 10.6 10.4 14.1

CaO 15.5 14.7 15.4 10.9 11.6 13.2 12.7 11.0 11.2 7.96

Na20 0.33 0.34 0.35 0.64 0.63 0.5t 0.48 0.81 0.64 0.47

K20 0.07 0.08 0.03 0.23 0.21 0.14 0.19 0,35 0.29 0.08

P205 0.03 0.03 0.03 0.24 0.23 0.15 0.17 0.35 0.34 0.04
Total 100.1 99.7 99.3 99.5 99.9 99.3 99.9 99.5 99.6 99.7

Mg' 0.75 0.75 0.62 0.72 0.71 0.68 0,73 0.65 0.65 0.54
# 5 2 2 10 4 2 3 2 6 4

mass (mg) 83 108 30 159 328 35 132 41 171 67

Mg' = molar MgO/(MgO + FeO)
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FIG. 7. Compositions of large (>5 g) Apollo I7 samples, taken from the
literature. Subsamples and clasts from large samples are included. (a)
Concentrations of Sc vs. Sin; (b) FeD vs. CaD. The ITE-poor highland rock
types are divided into pristine igneous rocks (ferroan anorthosite, troctolite,
dunite, and norltc) and granulitlc breccias. KREEP basalt and felsite are
noted by the symbols K and F, respectively. Sources of these data are many
and are found among those cited in the reference list.

known. These samples have high CaO concentrations (e.g.,

>-18%) and low Cr/Sc ratios (generally <75, Fig. 8b). Their REE

concentrations are greater than the REE concentrations of Apollo 16

• rroan anorthosites but are similar to other Apollo 17 anorthosites

(Fig. 9). Their Eu concentrations range from 0.7/Jg/g to 1.4/_g/g;

only one particle has Eu > I ffg/g. This range is similar to that for

anorthosites from Apollo 16 (_0.8 #g/g to 1.0ffg/g; e.g., Haskin et

aL, 198 I). The Eu concentrations of other Apollo 17 ferroan anor-

thosites range from 0.87 pg/g to 2.06/_g/g (Warren et at., 1991).

The highest concentration of 2.06/_g/g belongs to a "questionably

pristine" sample of a "relatively evolved variety of ferroan anor-

thosite" (Warren et aL, 1986), although even one "unambiguously

pristine" sampIe (7_114,5) has a high Eu concentration (I.4/_g/g;

Warren et al., 1991) compared to Apollo 15 and 16 ferroan

anorthosites. All of the 2 ram-4 mm ferroan-anorthositic lithic

fragments consist of polygranular plagioclase with brecciated or
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FIG. 8. Compositions of ITE-poor (Sin < 3.5 ,ug/g) highland lithic
fragments from samples 72443, 72503, 73243, 76283, and 76503. (a) Eu
vs. CaO concentrations showing the tight trend of troctolltic-anorthosite
fragments (mixing line between olivine with essentially no Eu and very
little CaO and plagioclase of fixed Eu and CaO concentrations). Granulitic
breccias form a tight cluster at _15 wt% CaO and 0.8/2g/g Eu. Samples
labeled "polymict breccias, undifferentiated" include polymict breccias and
breccias with compositions that do not correspond to any known ITE-poor
highland lithology. (b) Sc vs. Cr concentrations comparing ITE-poor lithic
fragments from this study with compositional fields of Apollo 17 samples
from the literature. The Cr/Sc values tend to correlate with Mg/Fe. Several
lithic fragments have low Cr/Sc values (-<75) typical of ferroan-suite
samples. For contrast, the highly magnesian troctolitic-anorthosite
fragments (all from station-6 samples) have high Cr/Sc values. Igneous
fragments with the composition of norite as defined by literature data are
scarce among the 2 mm_l mm lithic fragments. Most of those whose
compositions plot within the norite compositional field are polymict
breccias.

granulitic textures. Compositions of coexisting plagioclase (An)

and mafic silicates (Mg') from three of these samples confirm

ferroan mineralogy, although two lie near the magnesian end of the
ferroan-anorthositic suite.

In addition to igneous fragments and granulitic breccias, there is

a significant number (23) of lithic fragments that have low ITE

concentrations (labeled "polymiet breccias, undifferentiated" in

Figs. 8, 10). These fall into three broad groups, as follows: (I)

mixed lithologies, such as regolith breecias with coarse anorthositic

clasts, or granulitic breccias with observable clasts or adhering but
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FiG. 9. Concentrations of rare earth elements, normalized to volatile-free CI
chondrites, of anorthositic lithic fragments. The chondrite values are those
of Anders and Grevesse (1989) multiplied by 1.36. Heavy lines show REE
concentrations of seven anorthositic fragments, five from South Massif and
two from North Massif, discovered in this study. The stippled patterns
show the range of REE concentrations of Apollo 16 and Apollo 17 ferroan-
anorthositic-suite (FAS) samples that are listed in the compilation of
pristine samples by Warren (1993) (compositional data taken from
references given therein). There are many Apollo 16 anorthosites, but the
plotted range includes only FAS samples with strong evidence of pristinity
(i.e., Warrens's confidence class 8 or greater). The plotted Apollo 17 range
includes all 10 Apollo 17 FAS samples listed by Warren (1993). The
pristinity of most Apollo 17 FAS samples is questionable_ The REE pattern
of one "unambiguously pristine" ferroan anorth-osite ,74114,5, (Warren et
al, 1991) is shown by the light dashed line. The REE concentrations &six
of the 2 ram-4 mm anorthositic fragments are within the range of Apollo [7
anorthosites from the literature, and one (76283,7012) has lower REE
concentrations than any Apollo 17 anorthosite yet reported.

dissimilar breccia, and which, therefore, have anomalous composi-

tions compared to prominent breccia groups; (2) breccias, dark and

glassy to light colored and coarsely crystalIine, that have high to

exceptionally high Na20 and Eu concentrations indicative of alkali-

anorthosite or alkali-norite components; and (3) white, friable to

glassy-textured breccias. The white, friable breccias are an abun-

dant subgroup of the "undifferentiated" category and form a diffuse

compositional cluster. They differ from the granulitic breccias by

lower CaO concentrations (< 14%) and by higher Eu/CaO and Cr/Sc

ratios (Fig 8). Most of the white, friable breccias have relatively

low siderophile-element concentrations (e.g., Ni < 100 pg/g). In

thin section, several of these are clast-rich, containing a diversity of

clast types, and have glassy matrices; some appear to be fragments

of immature regolith breccias (e.g., 76503,7069, Sc = 7.2, Sm= 3.1

/zg/g) or melt/fragmental breccia of a single precursor (e.g.,

"troctolitic" breccia 76503,7057, Table A I).

As first mentioned in the section on regolith breccias, there is a

group of fragmental to glassy-matrix lithic fragments, found mainly

at station 6, that are distinguished from the white, friable breccias by

higher ITE concentrations (e.g., 4 ug/g-7/_g/g Sin). These frag-

mental breccias are an important subset of the regolith breccias

because they lack a mare component (e.g., they have low Cr and Sc

concentrations), and from petrographic examination of a subset of

these particles, they appear to lack the poikilitic melt-breccia

components thought to be basin-related melt breccias. If the

poikilitic melt breccias are from the Serenitatis event, then we

consider these regolith breccias to be representative of the pre-

Serenitatis surface (see also Jolliff and Bishop, 1993). The compo-
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FIG. 10. Concentrations of Sc vs. Sm of highland rock (ypes from samples
72443, 72503, 73243, 76283, and 76503. The average "poikilitic melt-
breccia matrix" compositions of 76503 and 72503 are the mean
compositions of the tight clusters of compositions shown in Figs• 4a, 5a
(_15-19 l_g/g Sc and 13-17/_glg Sm) and are taken to be representative of
the melt matrix of the poikilitic groups of impact-melt breccias (IMBs) at
stations 6 and 2. Melt-breccia lithic fragments that have lower Sm
concentrations than the matrix-rich ones form a diffuse "trend" between the

matrix-rich IMB compositions and those of the WE-poor rock types; we
attribute this mainly to clast dilution (i.e., dilution of the Sin- and Sc-rich
matrix composition by c[asts that have low concentrations of these
elements, especially Sm). When we include the compositions of the melt-
breccias that have relatively low Sm concentrations, the average
composition of the IMBs ties between the matrix-rich composition and the
average composition of the ITE-poor rock types (excludiqg troctolitic
anorthosite), which falls in the magnesian-granulite field• Thus, it appears
that the highland c[ast component of the IMBs is similar, on average, to the
ITE-poor highland lithologies (excluding the troctolitic anorthosite, which
is enriched anomalously in 76503)• From this, we infer that the ITE-poor
highland lithologies represented in these samples are largely representative
of the upper-crustal materials in the target region of the impact basin.

sitional trend of the noritic impact-melt breccias resulting from

"dilution" with clasts of relatively anorthositic, ITE-poor highland

tithologies extrapolates through the compositions of these mare-free

regolith breccias and into the field of granulitic-breccia compo-

sitions, as illustrated in Fig. I0. If the clasts in the impact-melt

breceias are the same rock types as the IYE-poor highland

lithologies, then small fragments of the impact-melt breccias that are

clast rich should have compositions trending toward the WE-poor

highland lithologies. In fact, the "clast-dilution" trend extrapolates

approximately to the mean composition of all of the ITE-poor

highland lithologies, minus the abundant group of troctolitic-

anorthosite fragments from 76503, which, although the5; may be one

of the melt-breccia clast components, appear to be dispropor-

tionately represented in that sample. We take this as evidence that,

to first order, the ITE-poor regolith breccias represent the surface

and the granulitic breccias represent the upper crust that dominated

the pre-Serenitatis region.

Im pact-Melt Breceias

Apollo 17 impact-meh breccias are noritic in bulk composition

and are the major carriers of ITEs in the regolith. They have been

classified into aphanitic- and poikilitic-matrix groups based on a

combination of petrographic and compositional characteristics

(Spudis and Ryder, I981). The majority of impact-melt breccias for
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which data appear in the literature belong to the compositionally

tight poikilitic group. The apbanitic melt-breccia group is composi-

tiona[ly more variable and differs from the poikilitic group by lower

TiO 2 and higher A1203 concentrations (Spudis and Ryder, 1981;

Ryder, 1992b; and this work, Table 4). The aphanitic breecias are

typically clast-rich relative to the poiki[itic breccias, and the

lithologic distribution of clasts differs (James et al., 1978; Spudis

and Ryder, 1981). Clasts in the poikilitic melt breccias are mainly

granulites and plutonic norites and troctolites (e.g., Simonds, 1975;

Dymek et at., 1976). In addition to these clast types, aphanitic melt

breccias contain clasts of feIsite, basalt, and feldspathic breccias

(Ryder et al., 1975a; Blanchard et al., 1977; Blanchard and Budahn,

1979). All of the large-rock samples of aphanitic melt breccia are

from the South Massif, but poikilitic melt-breccia boulders occur at

the base of both massifs.

About 70% of the 2 mm 4 mm particles from the South-Massif

samples are fragments of noritic impact-melt breccias, compared to

only 25% of those from the North-Massif samples. At both massifs,

most melt-breccia particles are of the poikilitic type, we base this

finding on compositional characteristics and examination of thin

sections prepared from 76503 and 72503 (this study) and related 1

mm_ mm particles (BIanchard et aL, 1975). The poikilitic-matrix

group generally forms a tight compositional trend between a mafic,

ITE-rich melt and ITE-poor highland rock types (e.g., Fig. 4a).

Poikilitic melt breccias from North and South Massifs (Table A3a)

show similar compositional variability, presumably due to variable

clast contents, but their mean compositions are significantly

different (e.g., Na, Eu, Sc, Cr, Ni; see Fig. I I and Table 2). Their

compositional differences suggest broad heterogeneities in the

ejected basin impact melt (Rockow et al., 1994b).

A few of the melt-breccia lithic fragments from station 3 and

10% of those from station 2 have aphanitic texture and composi-

tions typical of the aphanitic group known from the literature. A

Impact-Melt Breccias o o
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FIG. 11. Concentrations of Eu vs. Sm of noritic impact-melt breccias from
samples 72443, 72503, 73243, 76283, and 76503. Samples are divided into
three main groups: (1) "typical Sm, typical Sm/Eu" (Sm/Eu mostly < 9),
which corregponds to the poikilitic melt-breccia group; (2) "typical Sm,
high Sm_u" (Sm_u _ 8-12), corresponding to the aphanitic melt group
(all from South Massif except for the two indicated); and (3) "ITE-rich"
(mostly from South Massif). The poikilitic group comprises samples from
both massifs, but samples from the two massifs cover slightly different
compositional distributions, thus they are distinguished by two different
symbols.

few of the lithic fragments from station 6 also belong to the

aphanitic group and arc the first of this group in a North-Massif

sample. Previously, members of the aphanitic group have been

distinguished compositionally from those of the poikilitic group by

their low TiO 2 concentrations (-< 1.2 wt%, Spudis and Ryder, 1981).

Our data show that they can also be distinguished by lower Na20,

Eu, and Sr concentrations relative to their ITE concentrations

(Tables 2, A2c, Fig. I1), which suggests a significantly different

average plagioclase component, one that is more albitic in the

poikilitic melts. Megaseopically, the aphanitic breccias differ from

the poikilitic breccias by their finer grain size, darker color, and a

general lack of vesicles.

In addition to the aphanitic and poikilitic brcccias, we have

found a third compositiona[ly distinct group of melt breccias among

the soil particles that is characterized by ITE-rich compositions,

which we define as >18 Hg/g Sm (Tables 2, A3b). We chose 18

,ug/g Sm as a cutoff for the following reasons: (I) Subsamples of

the large, well-characterized melt breccias (boulder samples) have

Sm concentrations that do not exceed _17 pg/g Sm (much literature

data). (2) For all melt breccias among the 2 mm-4 mm particles,

there is a compositional hiatus at _18 ,ug/g Sm. This is mainly a

compositional classification; a few previously analyzed Apollo 17

samples also have Sm> 18 Itg/g; perhaps future studies will sub-

divide these melt breccias on the basis of different ages, textures, or

mineral and lithic components.

Compared to the other melt-breccia groups, the ITE-rich

brcccias have lower Cr/Sc ratios (average = 71) than either the

poikilitic or aphanitic breceias (average = 79 and 87, respectively)

but high Sm_u ratios, similar to the aphanitic breccias (Fig. I 1).

On most two-element plots, these samples do not cluster tightly but

are dispersed over a substantial range; thus, we use the term
"compositional group" loosely. The ITE-rich melt breccias mostly

have dark, glassy to cryptocrystaIline matrices, although some have

fine- to medium-grained poikilitic texture. All have fine-grained to

very fine-grained, evenly disseminated ilmenite; their matrix is

unquestionably of melt origin. Their bulk Mg' values arc lower than

those of either the poikilitic or aphanitic groups (Table 4), which

suggests that the target rocks were more evolved on average. They

contain a moderate proportion of dominantly single-mineral clasts,

but some have relatively large feldspathic [ithic clasts.

Although impact-melt breecias of this composition have not

been distinguished previously as a group, several samples with

similar compositions have been analyzed (samples 76224,15 and

76264,7; Laul et al., 1989), and Spudis and Ryder (1981) have

suggested that two "KREEP-rich" rake samples might represent a

third group of Apollo 17 melt breccias. Sample 72735, a 51 g

impact-melt breccia, has relatively high ITE concentrations (Sm =

19 Hg/g), but its composition differs from those of the particles wc

have found because of its unusually high K20 (K20 > Na20 ), low

TiO 2 concentration and high La/Sm rat]o (/_urali_=al., ]97_1, in ......

Ryder, 1993). As a group, compositions (and compositional vari-

ability) of these ITE-rich melt breccias are most similar to those of

melt group B from Apollo 15 (Ryder and Spudis, 1987; Ryder et

al., 1988; Fig. 12). Some significant compositional differences

exist, however, between the ITE-rich breceias from Apollo 17 and

the Apollo 15 group-B breccias (e.g., the Na and Cr concentrations

do not overlap). Also, subtle compositional differences exist

between these groups in their average ITE interelcmcnt ratios

involving the alkali elements, the REE, and Zr and llf. We defer

more detailed discussion of this group of melt breccias to a

subsequent paper.
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compositions. Apollo 15 melt breccias have been subdivided into five
groups (Ryder and Spudis, [987); four of the groups are shown (A, B, C,
D). Note the overlap between Apollo 15 type B melt breccias and the
Apollo 17 ITE-rich group. Apollo 15 data are from Ryder and Spudis
(1987), I.aul et al. (1988), Lindstrom et al. (1988), and Ryder et al. (1988).
The Apollo 17 data are from this work. The Apollo 17 poikilitic field
excludes melt breccias with <I0 itg/g Sm (ie., mainly the clast-rich
samples).

High-Titznium Mare Basalts

Earl), investigators of Apollo 17 high-Ti basalts distinguished

three groups (groups A, B, and C) on the basis of geochemical

parameters, such as Ba/Rb, I,a/Yb and Sr/Rb ratios (Rhodes et al.,

1976). Recently, Neal et aL (1990) split group B into BI and B2

based on REE ratios, and Ryder (1990) designated a unique basalt

particle as "typc D." Type D is characterized by higher MgO and

Cr203 and lower REE, TiO2, Sc, and CaO/A[203 (Ryder, 1990).

Samples of groups A and B are abundant and come from many

sample locations on the valley floor. The few group C samples are

mostly from the arca around Shorty crater (Wolfe et aL, 1981). The

type-D basalt sample is from the regolith core taken at station 9

(Van Serg crater). Petrographically, three main types of basalt have

been distinguished: olivine-porphyritic ilmcnite basalt, plagioclase-

poikilitic ilmenite basalt, and a type similar to Apollo-I! low-K

basalt, l[owever, these do not correspond to the compositional

groups; all petrographic types can bc found within each

compositional group (Ncal and Taylor, 1992).

Comparing compositions of the 2 mm-4 mm basaltic fragments

found in the highland soils of this study to compositions of known

Apollo 17 basalt groups (Fig. 13), we find that -35% of the basah

particles belong to group A, 20% to group B2, a few (-2%) to B1;

-44% are not easily assigned, on the basis of composition alone, to

one of the known groups. Of the latter, two have compositional

affinities to group C, and three fine-grained to glassy particles of

similar composition to each other share some compositional features

with the type-D sample. Two of those similar to type D are from

station 6 and one is from station 3. The remaining 29 particles are

too coarse grained to bc modally representative of the larger rock

from which they derive (similar to group "U" of Rhodes et al.,

1976; see also [taskin and Korotev, 1977), although compositions

of several of these are consistent with group B1.
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FIG. 13. Comparison of compositions ofhigh-Ti basalt fragments from this
study to those of basalts from the literature. (a) Hf vs. Sm concentrations.
The letters A, B, and C represent the average compositions of the three
basalt groups of Rhodes et aL (1976) and D is the composition of a unique
basalt sample reported by Ryder (1990). (b) Sm_u vs. La/Sm. Most of the
fine-grained basalt particles can be assigned to known groups (A, BI, B2,
and C). Three lithic fragments, labeled "other," have not been assigned to a
group although they share some compositional characteristics with group D.
Most of the coarse-grained lithic fragments have low incompatible-element
concentrations and are probably cumulates, not modally reprcsentative of
the rock from which they derive (similar to class "U" of Rhodes et al.,
1976), although a few fall consistently within the B1 field.

Fragments of mare basalt are abundant at station 6 and generally

scarce in the South-Massif samples, particularly at station 2 (Figs. 4,

5). This is consistent with the proximi b, of station 6 to the valley-

floor craters tlenry, Shakespeare, and Cochise. Prcsumably, the

South-Massif basalts originated farther out on the valley floor

because craters that have penetrated the light mantle are scarce

(Wolfe et aL, 1981). That there are so few basalts at stations 2 and

3 suggests that mixing on thc light mantle since its emplacement

_100 Ma ago (Arvidson et al., 1976; Wolfe et al., 1981) has been

minor. Based on the overall population of 2 mmM mm basalt



128 Jolliffet al.

particles, the distribution of basalt groups found in these

predominantly highland soils is similar to that observed from the

large rock samples from the valley floor (see Neal and Taylor,

1993); groups A and B (mainly B2) are abundant and group C is

rare. However, difficulty in classifying many of the small, coarse-

grained samples found in 76503 and 76283 biases the distribution.

For example, it appears that BI samples typically may be coarser

grained than the others and, thus, may be underrepresented in our
estimate.

Low-Titanium Basalts

Very-low-Ti (VLT) basalts, defined generally as having <1

wt% TiO2, have been found among the Apollo 17 samples, but not

as large rocks. Some VLT basalt has been found as fragments in the

Apollo 17 deep drill core (Vaniman and Papike, 1977; Wentworth

et al., 1979) and as clasts in impact-melt breccias 78526 (Warner et

aL, 1978), 73255 (James and McGee, 1980), and 72215 and 72235

(Ryder et al., 1975a). Although VLT basalts are rare in the sample

collection, mass-balance constraints for Ti in soils indicate that

some type of low-Ti basalt must be a significant (but <10%)

component of the regolith of the valley floor (Korotev and Kremser,

1992). Indeed, three different groups of glass of VLT-basalt

composition were found among -100/am glass fragments in the

regolith at station 9 (Lindstrom et aL, 1994), but their source is

unclear. Spectral reflectance data suggest that low-Ti basalts occur

in the central regions of the Sercnitatis basin and along its north-

eastern edge (Pieters, 1978). Other than having low Ti concentra-

tions, VLT-basalt samples exhibit a range of compositions as well

as textures.

We have found one lithic fragment in each of samples 72443,

72503, 76503, and two in 73243 that have compositional similari-

ties to previously reported VI,T basalts (moderately high Sc and

FeO, very low REEs). Their REE patterns are variable, ranging

from LREE depleted to slightly enriched (Fig. 14). Macro-

scopically, three of the particles appear brecciated and two have

coarse-grained, equigranular igneous textures. One of the samples,

76503,7040, has relatively high concentrations of alkali elements

(e.g., 0.8% K20; Table A5), which is similar to Apollo 12 high-K

basalt. It has a relatively fine-grained, brecciated texture and

abundant, finely exsolved augite.

Orange and Black Volcanic Glass

Spheres and broken fragments of orange and black glass have

been found in most soils from Apollo 17 (Heiken et al., 1974) and,

in some places, constitute entire soil horizons (sample 74220 and

core 74001/2). The compositions and morphologies of these glasses

are consistent with an origin by fire-fountaining of primary, mantle-

derived magma (tteiken et al., 1974). The black glass is the

devitrified or quench-crystallized equivalent of the orange glass.

Among elements determined by INAA, the orange glasses are

distinguished compositionally from high-Ti mare basalt by high

Cr/Sc ratios, high Co and Zn concentrations, and different REE

concentrations and patterns (Korotev and Kremser, 1992; Table

A5). On this basis, most of the regolith breccias found in samples

76503 and 76283 contain orange-glass as well as mare-basalt

components (see Zn concentrations of rcgolith breccias, Table 3),

and seven of the breccias consist almost entirely of orange and black

pyroclastic debris. A few of the particles from samples 72443 and

72503 are also relatively rich in orange glass. Breccias consisting

rriain[y of orange]black glass are rare among Apollo 17 rocks. One

such "rock" occurs among the 4 mm-10 mm fraction of 72500
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FIG. 14. Chondrite-normalized REE patterns of lithic fragments tentatively
identified as VLT basalt from samples 72443, 72503, 73243, and ?6503.
For comparison, a few of the known Apollo 17 VLT basalts from the
literature are shown by the dotted lines (Wentworth et al., 1979; B]anchard
and Budahn, ]979).

(Jerde et aL, 1987), and a larger orange-glass-rich breccia, 70175,

was reported by Simon et al. (1990). Presumably, these samples

have been delivered to the massif soils by small impacts on the
valley floor where concentrations of pyroclastic glasses occur.

Unusual or Unique 2 mm-4 mm Lithic Fragments

In addition to lithic fragments corresponding to the major

lithologic groups at Apollo ]7, we have found a variety of lithic

fragments of unusual composition and lithology. Some of these are

designated individually on Figs. 4-6, and REE patterns are shown

in Fig. 15. These are described briefly below.

Metal-rich Fragments-Sample 72503,7052 consists of 79%

Fe-Ni-Co metal and 21% lunar silicates of highland affinity (Table

5). The metal composition is similar to that found in I, chondrites

but is depleted in Au and As, presumably through loss by

volatilization. The metal forms an irregular mass _1.0 mmx 1.3

mm in cross section, and it contains no silicate inclusions. Sample

73243,7022, a breccia that is low in CaO (8.8%) and ITEs (e.g., 2.4

/zg/g Sm) and rich in volatiles (213/_glg Zn, 0.73% Na20 ), also

contains metal, presumably derived from an ordinary chondrite

(7300/zg/g Ni, 301 ng/g lr, and 108 ng/g Au).

Alkali-rich Fragments-In addition to the fragment of alkali

anorthosite mentioned previously, two breccias, 76283,7147 and

73243,7099, contain Eu-rich alkali-anorthositic clasts (Figs. 8, 15).

Several of the lithic fragments consist of felsite (76283,7024),

monzogabbro (72503,7208), and impact-melt brcccias that have

alkali-element enrichments, reflecting the presence of felsite, quartz

monzodiorite, or monzogabbro clasts (72443,7056; 72503,7169;

76503,7025; Fig. 15). Sample 76503,7025 contains a clast of

monzogabbro in addition to felsite clasts (Table A3d); the

monzogabbro c]ast contains rare grains of monazite in addition to

the more common lunar phosphates, whitlockite and apatite (Jolliff,

1993).

Feidspathi¢ Melt Breccias-A substantial number of melt-

breccia fragments are feldspathic (FeO < 8%) and have low ITE

concentrations (e.g., Sm < 10 pg/g) relative to the prominent,

compositionally tight cluster of melt breccias (Figs. 4_5). Although
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mostof thesefeldspathicmeltbrecciashavelowITEandFeO
concentrationsasaresultofoneormorelarge,feldspathichighland
clasts,afewofthesearenotunusuallyclastrich(e.g.,76503,7003

and72503,7102;TableA3d). Sample72443,7046,aclast-free
impactmelt,haslowITEconcentrations,ahighSc/Smratio,andis
enrichedinFeO(-12%;TableA3d) compared to the Apollo 17

400

a00 _ ITE-rich Lithic Fragments (a)
73243,7.a_

v_ ........ 77w_

i :......... V. ....... _

100 Y-. "_ /_
7o ", il,'k: _-" "

,o '/,--

30 "x..... >{_V/

20

10

300
_D

.,,&,
,.- 200
XD
c-
O
c-
O

_. 8o
E
_ 60
if)

40

3o

20

10

! I I I I I I I I I I I I I I

Impact-Melt Breccias (b)
-:.v.-:.v.v::;.v.v...

v:.v::: ::.-:.-::.v::.v.v :.v.v.-::. .......
v:._v::.-:.v.-.-.v:.v.v:: ::::.v:.v:::.-.v.v ;.-.v.v... ....

....... ::.v.v:.-.v.v.v.v .-.v.:..v.v:::.v.v::.v:. /'TE tk:h Me t

:i:i:i:!_:i:i-:::::::::::::::.:.:.:.:.:.:..............._.c.,_
_ii:. ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::......

_,. O_¢cla '_i 7 .y .................. "-':-"-'-w'v'v'v:'_X'X 78503,7025

_ r2so].rl.

............... i:i:' ::iiI ......''""::::::::::!:i:ii!!!!:.!

72443,7058

........... _'_ _\ /"/ 72443,?04_ ............. I

I

• ,¢ -- . _ I", ," 78503,7003

"\J

! i i I I I I I I ! ! i i i !

60 I-..- .-i ...... -_aa • •"*_, ......L,,, ^ ITE-poor Lithlc Fragments (c)
,o ........... /&

7

/ '.,.
5 i _

i \ .... "_-.--x
i \ ......... -"

3 i _.... - .....
. 72503,7041 _ "

x,..f ,..,_-.- i£_i_. 6ii_._-.....
i I I I I I I $ I I I I I I I

La Ce Nd 8m Eu Tb Yb Lu

melt-breccia groups (Table 2) and

those from other sites (cf Korotev,

1994).

Others-One lithic fragment from

station 3, 73243, 7002, is compo-

sitionally similar to 72275-type

KREEP basalt; it is the only fragment
we have found that has this distinc-

tive composition. Samples 76503,-

7139; 76503,7175; and 76503,7190

(Table A3d) are compositionally

similar to the unusually magnesian
and olivine-rich melt breccia 76055

(as summarized in Meyer, 1994).

Sample 76503, 7020 is an agglutinate

that has relatively high REE and very

high Ta, Th, and U concentrations,

but very low alkali concentrations

(Table A4), possibly as a result of

volatilization. This unusual compo-

sition may have been the result of a

clast of felsite (or specifically the

mineral yttrobetafite); if so, our thin

section of this agglutinate did not
reveal it.

FIG. 15. Chondrite-normalized REE

patterns of lithic fragments of unusual
composition. (a) Unusual ITE-rich lithic
fragments: 72503,7208 is a monzo-
gabbro breccia, exceptionally enriched in
REEs for an Apollo 17 sample;
73243,7002 is a lithic fragment of similar
composition to KREEP basalt from
sample 72275. 76283,7024 is a fragment
of granitic composition (-6 wt% K20);
and 76503,7020 is an agglutinate,
enriched in high-field-strength elements.
(b) Impact-melt breccias: 76503,7025 is
alkali-rich and has clasts of felsite and

monzogabbro; 72503,7169 is an alkali-
rich, fine-grained, "incipiently" poikilitic
melt breccia; 72443, 7056 is an alkali-
rich melt breccia (-2.2% KzO, 3.3 #g/g
Cs); 76503,7003 is a clast-poor impact-
melt breccia; and 72443,7046 is a coarse-
grained fragment of clast-free impact-
melt rock. The stippled pattern marks the
range of REE patterns for members of the
1TE-rich impact-melt breccia group,
which are distinct from the aphanitic and
poikilitic melt breccias, whose average
REE patterns are plotted for comparison
(see also Table 2). (c) ITE-poor lithic
fragments: 76283, 7119 is a fragment of
alkali anorthosite and 76283, 7147 and
73243,7099 are dark, alkali-anorthositic
breccias that have high concentrations of
Na20 and Eu; 73243, 7087 and
72503,7041 are gabbroic breccias that
have low concentrations of ITEs and

siderophile elements; and 73243,7022 is
a metal-rich breccia.
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TABLE 5. Composition of metal-rich particle 72503,7052,
estimated compositions of metal and nonmetal phases, and
comparison to metal in L chondrites.

72503,7052 metal in L
chondrite 2

particle nonmetal 1 metal I

Na % 0.083 0.400
Ca % 2.4 11.7

Sc /Lg/g 1,09 5,25
Cr pg/g 304 1460
Fe % 66.5 2.94

Co % 0.729 0.000735
Ni % 12.6

As pg/g 4.6
La ttg/g 0.49 2.4

Sm itg/g 0.192 0.92

Eu Itg/g 0.38 1.83
Yb /xg/g 0.15 0.72

lr ,ug/g 3.63
Au pg/g 0.60

mass mg 52.2 10.8
fraction % 20.8

83.2 84.5

0.92 0.70
15.9 14.7

5.8 18.7

4.58 5.01
0.76 1.76

41.3
79.2

I Calculated compositions assuming (1) the metal contains
negligible Sc and other lithophile elements, the nonmetal
contains negligible Co, Ni, As, lr, and Au, (2) the Fe/Sc and
Co/Sc ratios of the nonmetal are 5600 and 1.4, and (4) the
sum of Fe, Co, and Ni in the metal is I00 %.
2 Mean of eight L chondrites, Rambaldi (1976).

Comparison of North-Massif and South-Massif Samples:
lnterstation Variation

Several first-order differences exist between North-Massif, sta-

tion-6 soils and the South-Massif, station-2 and station-3 soils (e.g.,

Fig. 4a vs. Figs. 5a, 6a). In the station-6 soils, the three major

Apollo 17 rock groups (noritic melt breccias, lTE-poor highland

lithologies, and mare basalts) are represented subequally (Fig. 16).

In addition to marc-basalt components, the station-6 samples

contain several regolith breccias composed entirely of orange-glass

debris; both of these components reflect material delivered to the

lower massif slopes by craters of the central valley caused by Tycho

secondary impactors from the south (Arvidson et al., 1976). In

contrast, soils from station 2 have little contribution from the valley

floor; the majority of lithic fragments are impact-melt breccias. The

lithologic diversity at station 3 is only slightly greater than at station
2.

The compositions of the regolith breccias and agglutinates at

each sampling station reflect these differences in the proportions of

rock types. In the station-6 samples, the compositional distribution

of rcgolith breccias and agglutinates is between high-Ti marc basalt

and an average highland composition, as well as intermediate to the

lTE-rich impact-melt breccias and the ITE-poor lithologics (e.g.,

Fig. 4a). In the samples from _ations 2 and 3, regolith-brcccias

contain far less mare material and are enriched in impact-melt

components relative to those of station 6. Despite the fact that the

<1 mm soil fines from both station-2 samples, 72441 and 72501,

are mature and those corresponding to the station-6 samples are

submature, the station-6 samples have a higher proportion of

regolith breccias and agglutinates in the 2 ram-4 mm size range.

This suggests a decoupling of the 2 ram-4 mm particles and the < I

mm fines of the station-2 samples.

other
(a) 76503 0.4% tVofth Massif

I

_highlands, other
16%

Orange-glass bxs
1,5%

other
1.8%

(b) 76283 /
7-- highlands, other

_---_-::::: I //16 ¢.->_ trocanor

Orange-glass bxs
4.3%

other South Massif
(c) 72503 2.4%

[ highlands
. ..&:

0.6%- -"f--_:?- and aga. il / /_

other highlands
(d) 72443 1.o% t.a%

\ /

basalt
1.9%

FIG. 16. Mass-weighted proportions of major lithologies in (a) 76503, (b)
76283, (c) 72503, and (d) 72443. "Highlands" refers to ITE-poor highland
particles other than troctolitic anorthosite. Abbreviations: Irocanor =
troctolitic anorthosite, IMBx = impact-melt breccias (all varieties), basalt =
high-Ti mare basalt, reg bxs and ags = rcgolith breccias and agglutinates.
The proportion of IMBx in 76283 includes, a small group of lithic
fragments identified optically as melt breccias but not analyzed by INAA
for this work. "Other" includes VLT basalts and those lithic fragments
listed as "others" in Figs. 4-6. Note the similar distributions within the two
station-6 samples and within the two station-2 samples.
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Differences between samples from the two massifs are also

evident from comparison of groups of the same rock types (Tables

3, 4). For example, among the impact-melt breccias, there are slight

but significant differences in the compositions of the poikilitic

samples from North-Massif and South-Massif soils. Those samples

from station 6 typically have lower AI203, Sc, Cr, and Ni and higher

Na20, Sr, and Eu concentrations (Tables 3, 4). These compositional

differences between the poikilitic groups from the two massifs,

noted in the "Results" section above, suggest broad-scale

differences in the basin melt ejecta that may reflect gross lateral

differences in basin target rocks. This was not previously recog-

nized in studies of the large breccias, although Ryder and Stockstill

(1995) now report similar compositional differences among splits of

larger breccia samples.

Considering only the lithic fragments that we classify as impact-

melt breccias, the South-Massif samples (combining 72503 and

72443) have about the same percentage (by mass) of poikilitic-

group breccias (65%) as North-Massif sample 76503 (64%). Their

percentages of ITE-rich breccias are also similar {7.6% and 5.4%

respectively). They differ in their percentages of aphanitic-group

breecias (12% vs. 1.3%) and in ITE-poor (Sin < 12/tg/g) or clast-

rich melt breccias (15% vs. 29%).

The distributions of ITE-poor highland lithologies differ

significantly between samples from the two massifs. In addition to

a more diverse group of granulitic breccias, station-6 samples

contain fragments of coarse-grained, magnesian, troctolitic anortho-

site, which are absent in the station-2 samples.

The ratio of melt breccias to ITE-poor highland lithologies also

differs between samples from the two massifs. The ratio of melt

breccias to ITE-poor highland lithologies in the station-6 samples is

-1:1. In the station-2 samples, however, the ratio is - 5:1 (72501)

or greater (72443). These differences are consistent with a crudely

layered model for the massifs (see Fig. 2), as suggested by Rhodes

et aL (1974), and reflect the local geology. The soils from stations 2

and 3 are part of the "light mantle," which is thought to contain

material derived from near the top of South Massif by a surge of

material down the slopes following a secondary impact from Tycho

(Arvidson et aL, 1976; Wolfe el al., 1981; Luchitta, 1992). The

abundance of impact-melt breccias in the South-Massif samples

suggests that there is a "layer" rich in impact-melt ejecta atop the

massifs. This is consistent with observations made by the astronauts

of boulder tracks and outcrops or concentrations of boulders,

indicating that the boulders came mainly from higher elevations on

the massifs (Wolfe et aL, 1981). The apparent decoupting of 2

mm_l mm particles from the <1 mm fines at station 2, mentioned

in a previous section, may, be related to the mechanism of the light-

mantle deposit. Perhaps fines associated with the surge dropped out

close to the point of impact and the fines now associated with the

light mantle were incorporated nearer the base of the massif.

The lTE-poor highland lithologies presumably predate the basin

impact that produced the melt breecias that are more prominent

higher in the massifs. We suggest that the lTE-poor materials con-

stitt, tea greater proportion in the lower parts of the massifs (as also

inferred by Wolfe et al., 1981). We do not know whether these

materials were in place in the present massif structures prior to the

basin-forming event or were emplaced during the basin-forming

event as part of a very large ejecta package containing both

fragmental debris and impact melt. We suggest, however, that the

ITE-poor highland materials found in station-6, North-Massif soil,

which are similar to clasts found in the poikilitic breccia boulders,

may' be part of the pre-Serenitatis upper crest in this region. The

correspondence between the mean composition of the lTE-poor

highland lithie fragments and the extrapolation of the clast-dilution

trend of the poikilitic melt breccias supports this interpretation of

massif stratigraphy,.

lntrastation Variations

The lithologie distribution differs among samples from a given
station (Fig. 16), although, in general, interstation variations in

lithologie distributions exceed intrastation variations. This is seen

in the relative percentages of rock types shown in Fig. 16.

Although 76503 and 76283 differ in proportions of rock types, the2,'

arc more similar to each other than to either of the station-2 samples

in their proportions of rock types and in the compositions of similar

rock types (Table 3).

As an example of intrastation variation, at station 2, sample

72503 has fewer regolith breccias and a higher proportion of ITE-

poor highland material than sample 72443. Although our split of

72443 was only 2 g (85 particles) compared to 5 g for 72503 and

thus, perhaps, less representative than 72503, the differences

between them are too substantial to attribute entirely, to sampling

statistics. The difference in highland components may be related to

the sample locations. Sample 72503 was taken 5 m from the nearest

melt-breccia boulder, whereas sample 72443 was collected from

beneath a boulder that was overturned by the astronauts.

Fragmentation of this boulder during emplacement may have

contributed to the high proportion of melt breccia in 72443. The

lower proportion of regolith breccias in 72503 compared to 72443

remains puzzling.

At station 6, sample 76283 has a smaller proportion of highland

lithic fragments but more mare basalt than 76503 (Fig. 16) as

indicated also by compositions of the soil fines. Sample 76281 is

enriched in Fe and Sc, elements that are concentrated in basalts,

relative to other station-6 soil fines (Korotev and Kremser, 1992).

There may be several reasons for variations in the distribution of

rock types at station 6. First, highland material was delivered to

station 6 by mass wasting of the massif and mare material by impact

ejecta thrown up from the valley floor. It is unlikely that the

processes of mass wasting and cratcring have produced uniform

distributions of materials on such a small scale (76283 and 76503

were collected 25 m apart). Second, 76283 and 76503 are from

different soil depths; 76283 was taken from 2 cm-5 cm depth,

whereas 76503, although scooped from the top of the regolith, was

collected on the rim of a small crater (Wolfe et aL, 1981), so it

probably represents subsurface regolith, which is consistent with its

submature ls/FeO.

We might also expect the distribution of boulders and rocks to

affect local regolith variability. Korotev and Kremser (1992) noted

that surface soils taken near the boulders at station 6 have the

highest ITE concentrations, presumably' due to a higher proportion

of melt-breccia fragments "eroded" from the boulders, llowever,

despite the fact that 76280 was taken only, 1 m from a melt-breccia

boulder, the fine fraction is not relatively enriched in ITEs and the

coarse fraction is not enriched in melt-breccia fragments (Fig. 16).

On the other hand, local fragmentation of a large rock may have

caused the high proportion of troctolitic anorthosite in 76503

relative to 76283. Troctolite samples 76535 and 76536 (found in a

rake sample from the same soil as 76503), related troctolitic

anorthosite 76335 (Warren and Wasson, 1978), and rocklets from

76500 (Warren et al., 1987) may result from the breakdown of the

same rock.
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Comparison of Lithic Fragments with Large-rock Samples:
Distribution and Diversity of Lithologies

The proportions of rock types as determined from unbiased sets

of 2 mm--4 mm lithic fragments differ from the proportions of rock

types as indicated by large-rock samples (e.g., >5g). Ryder (I 992a)

reached a similar conclusion by comparing soil and melt-breccia

compositions. Consider station 6. From a compilation of literature

data on the large-rock samples (mainly Meyer, 1994), the majority

(-90%, by mass) of large rocks at station 6 are melt breccias.

Troctolite and troctolitic-anorthosite (-5%) and norite (-3%) are the

only other rock types present in excess of I%. The 2 mm-4 mm

population, on the other hand, comprises subequal amounts of four

rock types: impact-melt breccia, ITE-poor highland lithologies

(granulitic breccias and troctolitic anorthosite), mare basalt, and

regolith breccias. We consider the proportions of rock types as

determined from lithic fragments in the soil to be more represen-

tative of the local rock types for the following reasons: (I) There

are many more 2 mm-4 mm fragments than large-rock samples in

the collection. For example, only 34 large-rock samples were

returned from station 6, whereas in one 5 g split of 76503, there are

over 200 lithic fragments. (2) The 2 mm-4 mm fragments have no

selection bias; for this study, all fragments in one 5 g split were

analyzed. At the North and South Massifs, the astronauts targeted

large, coherent boulders for sampling; consequently, most of the

rocks returned were impact-melt breccias. (3) As a result of the

efficiency of small-scale lateral mixing, samples of soil typically

contain a good representation of local rock types; thus, they provide

information on the local distribution of rock types. Such informa-

tion is difficult to obtain from the large-rock data. On the other

hand, we recognize that just as the large-rock distribution may be

biased toward melt breccia because such rocks are extremely

coherent and resistant to comminution, the smaller [ithic fragments

may be biased towards the less coherent highland lithologies.

Nonetheless, the diversity of lithologies found among the 2

ram-4 mm fragments compares well with the diversity found among

the large-rock samples. In fact, the range of compositions of lithic

fragments from the two North-Massif soil samples nearly equals the

range of compositions of the entire Apollo 17 large-rock suite.

Almost all the major compositional types of basalt are found among

the 2 mm-4 mm lithic fragments at station 6. The 2 mm_ mm

lithic fragments from station 6 also show a wide range of regolith

compositions, including the group that consists almost entirely of

orange and black glass breccias and the previously unrecognized

regolith-breccia group that we infer, from lack of Serenitatis-related

mare or impact-melt components, to represent pre-Serenitatis

surface materials. Station-2 soils have a more limited range of rock

types, but the compositional diversity of 2 ram-4 mm impact-melt

breccia fragments exceeds that of the melt breecias from larger

samples. In particular, the 2 ram-4 mm [ithic fragments from

station 2 contain the group of ITE-rich impact-melt breccias that is

compositionally distinct from the aphanitic and poikilitic melt-

breccia groups. Impact-melt breccias of the 2 ram-4 mm fragments

from station 6 are dominantly of the poikilitic group, but we have

found several fragments of aphanitic melt breccias, a type not found

previously in station-6 samples.

The 2 mm-4 mm ITE-poor highland lithic fragments include a

diverse and abundant group of granulitic breccias ranging from

noritic to gabbro-noritic bulk compositions but only a small

proportion of igneous fragments. The igneous rock types, known

mainly from studies of clasts in large breceias, are relatively

uncommon among the 2 mm-4 mm fragments. Station-6 samples

contain 2 mm--4 mm fragments of coarse-grained troctolitic

anorthosite but none of norite, which is surprising given that norite

is a common melt-breccia clast lithology. These differences in

proportions of lithologies between the highland components of the

soil and clast populations of the breccias are consistent with the

interpretation that the ITE-poor highland components in the soil

were not produced solely by the breakdown of the melt-breccia
boulders.

In general, rock types that are rare among large samples, such as

spinel troctolite, dunite, ferroan anorthosite, felsite, VLT basalt, and

KREEP basalt, are also rare or absent among the 2 mm-4 mm

fragments. We have found no individual lithic fragments composed

entirely of dunite or spinel troctolite; however, based on

compositions (mainly Cr concentrations), these lithologies do occur
as clasts in some of the 2 mm--4 mm breccias. Their occurrence

mainly as clasts in boulder breccias is consistent with their being

mid- to lower-crustal components, sampled only by basin impacts

that formed the poikilitic boulder breccia. This does not preclude

their occurrence among soil particles (e.g., as found among 1 ram-2

mm particles by Bence et al., 1974 and Blanchard et aL, 1975).

Lithic fragments that appear compositionally to be ferroan

anorthosite are found in four of the five samples and are more

common than expected based upon their dearth among larger

samples. The observation that these are not found as large rocks

may result from limited sampling or it may indicate that only finely

pulverized remnants of ferroan anorthosite remain in the Apollo 17
region. The compositional range, as indicated by the spread of Eu

concentrations (Figs. 8, 9) is consistent with their being of diverse

and possibly exotic origin.

Very-low-Ti basalts, basaltic glasses, and lithic fragments are an

important component of the basalts in the Taurus-Littrow valley

(Lindstrom et aL, 1994) and may be prominent elsewhere in the

Serenitatis region, yet none have been found among the large

samples from Apollo 17. The few samples that have been found are

small and are lithologically and compositionally diverse (e.g.,

Lindstrom et al., 1994, and references therein). The five lithic

fragments ofVLT basalts that we have found are also texturally and

compositionally diverse (Fig. 14). That several of these occur as

lithified breccias suggests derivation from impacts distant from the

Apollo 17 site where there is a substrate rich in VLT basalt. That

they were found in samples from all three stations involved in this

study as well as at other stations (Lindstrom et al., 1994) indicates

that, although minor, they are a widespread component at the

Apollo 17 site and that they may have affinity with the highland
materials.

Relationships between 2 mm-4 mm particles
and < 1 mm Fines

Based on data primarily for major elements, Rhodes et al.

(1974) noted that most of the compositional variation in Apollo 17

soils (< 1 mm fines) could be explained by variation in abundance

of four components: mare basalt, orange glass, lTE-rich noritic

impact-melt breccia, and an ITE-poor, feldspathic component

("anorthositic gabbro"). Including data for a number of trace

elements, Korotev and Kremser (1992) (who used an anorthositic-

norite composition as the ITE-poor feldspathic component) argued

that other components were also needed to account for the mass

balance. They showed that the basaltic component of the soils from

the valley floor contained less Ti than high-Ti mare basalt and

argued that VLT basalt was probably also a significant component
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oftheregolith(7%ofthetotalbasaltcomponent).Theyalsonoted
thattheNorth-Massifsoils,in particularthosefromstation6,
requiredahigh-Mg'component("MG"),whichtheymodeledas
magnesiantroctolite/norite.In detail,station-2soilswerenotfit
wellbythemodel,whichisasurprisingresultconsideringthatthe
station-2soilscontainonlyminimalquantitiesofmarebasaltand
orangeglass.Inclusionof acomponentof "Apollo17KREEP-
basalt"withthecompositionof WE-rich "pigeonite basalt" from

station-2 sample 72275 (Salpas et al., 1987) improved the fit but

required -4% of such a component in the best-fit mixture at station

2. Mass-balance models, such as those of Rhodes et al. (1974) and

Korotev and Kremser (1992), cannot provide unique solutions

because they are based on assumptions about which of the observed

rock types are the significant components of the regolith, but they

do indicate reliably when a particular set of assumed components

does not account for the composition of the soil.

From our investigation of the 2 ram-4 mm fragments, we have

identified lithologies actually present in the soils, and assuming that

they are not significantly different from the lithologic components

that make up the bulk of the <l mm soil, we can now correlate

these lithologies with the model results of Korotev and Kremser.

The dominant ITE-poor highland lithologies in samples 76283 and

76503 are granulitic breccias and magnesian troctolitic anorthosite,

the latter almost certainly related to the larger samples of troctolite

76535 and troctolitic anorthosite 76335. Mineral compositions in

the granulitic breccias range from magnesian to ferroan, and bulk

compositions range from those of noritic anorthosite to anorthositic

norite, with -22-26 wt% AI203. When averaged, these composi-

tions correspond to an anorthositic-norite component similar in

composition to the component used by Korotev and Kremser, who

recognized that granulitic breccias are the main ITE-poor,

feldspathic rock types at the site. In detail, the ferroan granulitic

breccias, Mg' = 0.67, correspond to the anorthositic gabbro compo-

nent of Rhodes et aL (I 974), Mg' = 0.68. The magnesian granulitic

breccias are more magnesian on average (Mg' = 0.72-0.79) than

the anorthositic-norite component of Korotev and Kremser (Mg' ,_,

0.70). Although we have found a highly magnesian component in

the troctolitic anorthosites of 76283 and 76503 (Mg' = 0.86) as

predicted by Korotev and Kremser, it is less mafic (-6% MgO) than

their "MG" component (16.8% MgO) or troctolite 76535 (19%

MgO; Rhodes et aL, 1974). Unless olivine and orthopyroxene from

this coarse-grained lithology break down preferentially relative to

plagioclase into <1 mm grain sizes, it is the combination of

troctolitic anorthosite and magnesian granulitic breccia (up to 13%

MgO) that satisfies the requirement for a highly magnesian

component in the <1 mm soil. As noted by Korotev and Kremser,

if the actual carrier of the excess Mg in the North-Massif soils is, as

we now believe, less mafic than the "MG" component used in their

model, then mass balance requires that the abundance of the

component in the soil be greater than that predicted for the "MG"

component by their model.

In <1 mm soils from station 2, the ITE-poor highland material

is relatively well satisfied by a single mixing component,

anorthositic norite (Korotev and Kremser, 1992). This is consistent

with the absence of the troctolitic-anorthosite lithology in samples

72443 and 72503 (Figs. 4, 5). However, in the models of both

Korotev and Kremser (1992) and Rhodes et aL (1974), the ITE-poor

highland component constitutes -45% of the <1 mm soil. We find

that only -10% of the 2 mm-4 mm particles are anorthositic norite

in composition (recalculated on a regolith-breccia-free basis),
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and those are mostly granulitic breccias. This is reflected in the

difference between the mass-weighted mean composition of the 2

mm_. mm fragments and that of the corresponding <1 mm soil

(Fig. 17). For example, the 72503 mean composition is substan-

tially richer in ITEs (e.g., Sm = 11.8 pg/g) than the 72501 bulk

composition (8.2 _g/g). Thus, the South-Massif < 1 mm soils have

a higher proportion of ITE-poor highland components and less

impact-melt breccia than the corresponding 2 mm_l mm lithic

fragments. There are two possibilities that are not mutually

exclusive: (1) the ITE-poor material is more friable and thus breaks

down more readily and concentrates in the finer fractions of the soil;

and (2) at least part of the fine soil is derived from a different part of

South Massif than the coarse material. The latter possibility is

consistent with the earlier observation that, based on soil maturity

and number of agglutinates in 72503, the <1 mm fines and coarse

particles are "decoupled." The latter possibility is also consistent

with the mode of origin of the light mantle. Lucchitta (1992)

proposed that the light mantle is an "impact-propelled feature" and

not an avalanche, although Wolfe et al. (1981) suggested that in the

process of dislodging material from the top of the massif, material

was also mobilized in an avalanche fashion. Perhaps much of the

coarse material was launched from the top of the massif, whereas

the <1 mm soil was "swept up" from South-Massif slopes during

formation of the Iight-mantle deposit. If the subsurface rocks of

North and South Massif are fundamentally similar, then the

differences in the ratios of their noritic-breccia to ITE-poor

components and differences in proportions of their ITE-poor

highland components may reflect stratigraphic differences. The

North-Massif soils reflect the makeup of lower levels of the massifs,

the light-mantle fine soils at South Massif reflect intermediate

levels, and the coarser, impact-melt-breccia-rich components of the

light mantle reflect upper levels.

Another difference between the station-6 and station-2 soils

noted by Korotev and Kremser (1992) was an apparent difference in

ITE-bearing components. A component with the composition of

Apollo 17 KREEP basalt (as in 72275) provided an improved model

fit of components to the average station-2 soil. However, we have
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found only one lithic fragment that is compositionally similar to

72275 KREEP basalt. Instead, we now consider as an ITE-bearing

component the group of ITE-rich impact-melt breccias, which is not

common among the large-rock samples, and whose average

composition is an alternative to (and quite different from) the

72275-Iike component. Using the average composition of the ITE-

rich melt-breccia group (Table 2) as a component instead of the

KREEP basalt component of Korotev and Kremser (1992) provides

a better fit to the composition of the <1 mm fines from station 2.

Thus, overall, our knowledge of compositions of 2 mm-4 mm soil

particles significantly improves our understanding of the composi-

tions of the < I mm fines and refines our knowledge of the geology
of the Taurus-Littrow site.

Implications for Remote-Sensing Studies and Future Robotic
Missions to the Moon

Recent remote-sensing studies (e.g., Picters and Taylor, 1989;

lIawke et al., 1992) have focused on relatively small areas (e.g., 1
km "footprint") and spectral reflectance data have been used to

characterize regions of the lunar highlands as anorthositic (>90%

p[agioclase), noritic or gabbroic (low- or high-Ca pyroxene-rich,

respectively), troctolitic (olivine-bearing), or some mixture of these.

Such average characterizations, however, are for areas that may be

large relative to individual, subsurface geologic rock formations.

Information pertaining to important details of composition and

petrologic history are lacking. For example, (1) are the rocks of

ferroan, magnesian, or alkaline geochemical character, (2) what is

the range of rock types, (3) are the surface units composed of

breccias, impact-melt rocks, volcanic rocks, p[utonic rocks, or are

they soils, and (4) do any of the rocks at the site form related rock

series? Analyses of fresh rock surfaces such as central peak slopes

or crater walls may yield information on bedrock, but the makeup of

regions bearing a veneer of regolitb is obscured and, at best,

averaged by remote-sensing techniques. Near-infrared reflectance

spectra of North and South Massifs and other similar-appearing

locations on the rim of the Serenitatis basin indicate that the

mineralogical makeup of the rocks is generally that of anorthositic

norite (liawke et al., 1992). Indeed, the average composition of a

mixture of "noritic" impact melt breccia, relatively anorthositic

granulitic breccias, and a variety of igneous rocks, including dunite,

norite, and gabbro, is that of anorthositic norite. There are,

however, no fragments of pristine anorthositic norite among the 2

mm-4 mm particles analyzed in this study, and there are few large-

rock specimens of true anorthositic norite (e.g., 78255 = 48 g;

Warren and Wasson, 1978; I,SPET, 1973). It is difficult to infer the

subregolith or sub-megaregolith basement geology from the average

remotely-sensed surface composition. Data from specific rock

samples are required.

Small lithic fragments in soils would be good targets for

analysis in situ by either an immobile robotic lander or a mobile

robotic rover, l,ithic fragments could be easily separated from fine

material by simple mechanical sieving on a grid, with the fines

collected for chemical analysis. The lithic fragments could be

sorted according to optical criteria by remote teleoperation using a

color camera, much the same as we do in the laboratory prior to

chemical analysis (see also Ryder et al., 1988, for effectiveness of

optical discrimination of lithologic groups). A subset of samples

representing the lithologic groups could then bc analyzed for

chemical and mineralogical components using techniques such as

_x-p-X, Raman, M0ssbauer spectroscopy, or x-ray fluorescence.

Optical classification of a large number of lithic fragments, coupled

with more detailed analysis of a subset, would provide a statistical

distribution of rock types at a given sample site. This approach,

combined with careful placement of a robotic sampler, would

provide access to otherwise inaccessible samples such as steep rock

ledges in crater walls, central peaks, deep rifles, or tall highland

massifs like those bounding the Taurus-Littrow Valley. This

approach would be especially useful for a single-point lander

without mobility.

SUMMARY AND RAMIFICATIONS FOR FUTURE

EXPLORATION STRATEGIES

Future lunar remote sensing and future near-term sampling and

analysis will be dominantly of regolith materials. Resources will

come From the regolith or will be the regolith itself. It is necessary

to understand the regolith and how to obtain the most information

from it. This study of highland massif samples from Apollo t7, like

that of Ryder et al. (1988) of Apennine Front samples from Apollo
15, demonstrates the wealth of information that can be derived from

small lithic fragments contained in the regolith. If the only' samples

we had of the Apollo 17 site were 2 mm-4 mm particles, we would

still know the composition and distribution of the maior Apollo 17

rock types. Specifically', we would knov_' (1) that the massifs consist

of several compositionally distinct groups of noritic impact-melt

breccias with moderate ITE concentrations and ITE-poor highland

lithologies that are dominantly granulitic brcccias; (2) ferroan-

anorthositic-suite rocks are rare but not absent; (3) high-Ti basalts

underlie the valley floor and at least several compositionally distinct

flows were exhumed by cratering; (4) Ti-rich pyroclastic glass is

also a prominent mare component, whereas VLT basalt is rare and

diverse; and (5) the light mantle has experienced little admixture of

valley-floor material. We have also gained new understanding of

the Apollo 17 site by studying 2 mm-4 mm particles. By analyzing

numerous lithic fragments from the North- and South-Massif soft

samples, we have (1) determined the distribution and proportions of

the maior rock types, (2) demonstrated subtle compositional

variability within groups of related rocks, and (3) discovered

lithologies that, because of sampling limitations, were not found as

large rocks or as clasts with the large breccias.

The major rock types represented by the soil particles are

mainly' the same as those found among the large-rock samples, but

because the soil samples include a large number of lithic fragments

and are not biased by preferential sampling, they give a better

estimate of the proportions of rock types represented by the most

abundant material at the surface, which is regolith. Each soil

sample gives an estimate of only the local (a sampling station)

proportion of rock types, but by analyzing several soils at various

locations, we can infer proportions and distribution of rock types

throughout the Taurus-l,ittrow Valley (see also Korotev et al.,

1995b). For example, we infer that VLT basalt and ferroan material

occur in small proportions throughout the Taurus-Littrow Valley,

and we infer that the ITE-rich melt-breccia group, found mostly as

small lithic fragments, constitute a significant ITE-rich component,

whereas KREEP basalt does not. Several igneous rock types found

as larger rocks or clasts in large brcccias, including norite, spinel

troctolite, and dunitc, were not found as pristine samples among the

2 mm-4 mm lithic fragments.

We have found significant differences between populations of

lithologies from North- and South-Massif samples. Station-6
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samplescontaina greatervarietyandproportionof lTE-poor

highland rock types, while samples from stations 2 and 3 contain a

greater variety and proportion of lTE-rich highland material. Given
that the station-6 soils derive from a different level of the massif

than those from stations 2 and 3 (i.e., the light mantle at the base of

South Massif derived mainly from an upper level, and the soil at the

base of North Massif represents a greater vertical extent of the

massifs and especially the lower levels), such differences in

proportions suggest that impact-melt breccia is concentrated at the

top of the South Massif.

The North- and South-Massif poikilitic melt brcccias are

slightly different in composition, which implies that the basin melt

from which the poikilitic fragments derived, presumably Serenilatis,

was not completcly homogeneous. Compositional variability within

the poikilitic melt-breccia group was not apparent in the data set of

largc rocks nor from mixing models involving the toils. The

present study illustrates the advantage of analyzing a large number

of particles by a consistent and precise technique.

Wc have found scvcral rock types that are absent or poorly

represented among the largcr rock samples. For cxample, we have

found a distinct group of impact-melt breccias that was previously

unrecognized as a group at Apollo 17 and that is similar in

lithophile-element composition to Apollo 15 group B. We have

also discovered a group of regolith breccias that appears to predate

the mare fill of the Taurus-l,ittrow Valley and perhaps also predates

the presumably Serenitatis origin of the poikilitic impact-melt

breccias. Wc have also found a variety of particles of unusual

composition, such as a vcry-high-K-VLT basaltic breccia, unaltered,

crystalline VLT-basah fragments, unusually ITE-rich lithic

fragments (some with alkali-element enrichments), and a metal-rich

particle (possibly from an L-chondrite).

Given the great diversity of lithologic information contained in

soil particles and that most information bearing on petrographic

relationships is maintained, 2 mm_4 mm particles have the potential

to provide detailed information about site geology. Compositional

and petrographic information obtained on 2 mm-4 mm particles

also serve to relate the soil and large-rock data sets. By examining

the 2 mm-4 mm fraction, we can gain a better understanding of

regolith formation and how large rocks relate to the regolith and

local geology. Soils and the coarse lithic fragments they contain

should be considered essential targets for future automated sample

analysis and sample return missions.
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APPENDIX
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FIG. AI. Transmitted light photomicrographs of representative 2 mm4 mm lithic fragments. Field of view (FOV) is -3 mm unless otherwise noted. (a)
Troctolitic anorthosite fragment 76503,7065, in plane light (PL, FOV = 1.6 mm). Large central grain is coarse plagioclase, clouded with inclusions. Large
mafic grain (top, right) is olivine with a partial rim of orthopyroxene (pyroxene cleavage) separating olivine from plagioclase. Marie grain (lower left) is

orthopyroxene. Mineral compositions and bulk composition (Table AI) place this assemblage in the magnesian suite of lunar plutonic rocks. (b)
Anorthosite 72503,7085 under crossed polarizers (CP). Texture is granoblastic (recrystallized) and minor poikilitic pyroxene is present. Plagioclase and
pyroxene compositions indicate that this fragment belongs to the ferroan-anorthositic suite. (c) Granulitic breccia 76503,7079 (PL, FOV = 1.6 mm).

Texture is very fine grained and composition is magnesian (Table A2). (d) Granulitic breccia 76503, 7084 (PL). Granoblastic texture coarser than (c);
composition is ferroan (Table A2). (e) Poikilitic-matrix impact-melt breccia, 72503,7202 (partial CP). Coarse poikiloblastic texture appears as light and
dark regions of matrix. (f) Aphanitic-matrix impact-melt breccia, 72503,7104 (PL), (Table A3c). This figure is continued on the following page.
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FIG. AI (continued).
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FIG. A1, continued. Transmitted light photomicrographs of representative 2 mm-4 mm lithic fragments. Field of view (FOV) is -3 mm unless otherwise
noted. (g) ITE-rich impact-melt breccia 76503,7100 (PL), (Table A3b). Matrix is aphanitic. (h) "Non-mare" regolith breccia, 72503,7044 (PL), (Table A4).
The "non-mare" designation is based on low Sc concentration (12.5/1g/g) and absence of obvious mare-basalt lithic clasts. Right edgc of the fragment
consists of agglutinitic glass. (i) "Typical" regolith breccia 72503,7016 (PL). Chemical composition (Table A4) is similar to that of the corresponding < 1
mm fines (72501, Table I). (j) Orange-glass regolith breccia 76503,7043 (PL), (Table AS). (k) Ifigh-Ti mare basalt 76503,7101 (Table AS). Colorless
grains are plagioclase, forming a coarse, poikilitic mass enclosing pyroxene and ilmenite; pyroxene grains are mostly titan-augite; and opaque grains are Fe-
Ti oxide, mostly ilmenite. (1) Low-Ti basalt 72443,7053. Porphyritic texture with phenocrysts of elongate clinopyroxene and finer-grained, less abundant
plagioclase laths. Dark areas include fine-grained, poikilitic ilmenite, spongy-textured mesostasis, and minor troilite. Section is slightly thicker than 30,urn
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TABLE A1. Highland lhhic fragments, ITE-poor, other than granulitic breccias.

Troctolitic Anorthosite Other

Sample 76503 76503 76503 76503 76503 76503 76503 76503 76503 76503 76503 76503 *

,7073 ,7237 ,7076 ,7083 ,7230 ,7065 ,7075 ,7229 ,7057 ,7069 ,7109 ,7155

Description Fsp Bx Fsp Bx Plag Troc- Plag Troc- Troc- Oliv Troc- Fsp Bx NA/AG CI Impact
+ O1 + O1 Gls Bx + O1 Anor Anor + Plag Gls Bx Gls Mtrx + Gls Vns Melt GIs

Mass (mg) 7.56 5.46 5.09 25.63 8.26 20.40 19.82 16.56 25.27 12.99 27.88 13.36

Major-element Oxides

SiO 2 FB 44.3 44.6 44.5 42.4 44.9 45.0 46.6 45.2 43.9

TiO 2 FB 0.04 0.01 0.04 0.04 0.05 0.21 0.23 0.35 0.54

AI203 FB 33.t 31.5 30.5 22.1 20.5 19.7 21.0 25.8 21.4

Cr203 INAA 0.019 0.080 0.077 0.087 0.054 0.124 0.085 0.138 0.168 0.19 0.132 0.14

Cr203 FB 0.02 0.08 0.05 0.10 0.08 0.16 0.22 0.16 0.15

FeO INAA 0.68 1.42 1.74 4.22 4.72 3.5 2.9 10.51 7.28 6.72 4.74 5.63

FcO FB 0.76 1.42 1.54 4.76 4.95 7.76 6.96 4.74 5.98

MnO FB <0.01 <0.01 0.02 0.07 0.05 0.09 0.10 0.08 0.09

MgO FB 2.99 5.20 6.52 17.1 18.8 15.8 13.5 7.90 15.2

CaO 1NAA 18.4 17.3 15.9 12.6 11.7 12.8 14.9 2.82 11.2 11.6 15.0 12.7

CaO FB 18.3 17.5 16.8 12.2 11.1 11.3 11.5 15.0 12.3

Na20 INAA 0.38 0.34 0.33 0.25 0.24 0.25 0.28 0.057 0.44 0.45 0.41 0.31

Na20 FB 0.38 0.32 0.30 0.21 0.21 0.43 0.43 0.38 0.29

K20 FB 0.04 0.04 0.04 0.03 0.01 0.08 0.09 0.06 0.08

P2Os FB 0.01 0.01 0.06 0.01 0.02 0.08 0.04 0.03 0.04

Total (FB) 100.0 100.7 100.3 98.9 100.6 100.5 100.6 99.7 99.9

Mg' 0.87 0.87 0.88 0.86 0.87 0.78 0.78 0.75 0.82

Trace Elements (,ug/g)

Sc 0.58 0.99 1.89 1,87 1.35 2.88 0.95 2.68 6.38 7.18 8.90 7.78

Cr 133 547 524 594 372 851 581 945 1152 1300 906 928

Co 3.5 9.4 10.4 21.6 21.4 20.36 18.41 48.6 24.4 20.6 15.7 24.4

Ni <16 17 22 24 20 24 35 53 78 59 110 88

Zn I 5 <5 --- 5 <5 <3 7 4 10 9 ---

Rb 1.7 <5 <2 1.7 <4 <3 1.0 4 3.7 <5 3.0 <6

Sr 177 160 164 127 122 133 152 25 148 149 166 137

Zr <30 <60 25 <17 <35 17 <11 <30 77 78 59 77

Cs 0.14 0.06 0.03 0.07 0.07 0.032 0.071 0.05 0.59 0.39 0.09 0.09

Ba 67 54 49 34 28 38 33.7 8 83 89 76 79

La 2.32 1.81 2.92 1.76 1.69 2.11 1.52 0.467 6.56 7.22 5.12 6.41

Ce 5.2 4.1 7.5 4.4 4.3 5.I5 3.49 1.25 16.9 18.2 13.1 16.5

Nd 3.3 1.9 4.2 3.0 1.9 3 2 <I .8 11.4 10.7 7.3 9.7

Sm 0.64 0.57 1.24 0.64 0.60 0.90 0.44 0.214 2.85 3.09 2.30 2.93

Eu 1.20 1.16 1.08 0.81 0.74 0.84 0.99 0.166 1.10 1.15 0.99 0.96

Tb 0.10 0.I0 0.25 0.13 0.10 0.18 0.07 0.043 0.57 0.64 0.48 0.60

Yb 0.25 0.34 0.67 0.52 0.35 0.75 0.29 0.43 2.43 2.67 1.96 2.17

Lu 0.025 0.041 0.083 0.074 0.046 0.I0 0.04 0.087 0.337 0.37 0.269 0.294

Hf 0.09 0.22 0.38 0.35 0.13 0.43 0.15 0.19 2.11 2.02 1.72 2.12

Ta 0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.02 0.30 0.20 0.38 0.29

lr (ng/g) <3 <2 <3 <0.9 <2 <1.3 <0.8 <1.1 3.4 4.9 4.2 2.4

Au (ng/g) <4 ...... <3 <1.4 !.2 --- <0.5 <4 <3 <1.5 <3

Tb 0.08 0.05 0.47 0.18 0.21 0.25 0.10 0.07 1.4 1.5 0.96 0.98

U <0.2 0.06 0.10 <0.3 <0.3 0.05 0.04 <0.06 0.41 0.34 0.29 0.29

Sample mount fbo fbo tbo ts3C lbo ts3A ts3B na ts4B ts20A ts4D ts20C

INAA# 273.129 277.113 273.132 273.139 277.106 273.121 273.131 277.105 273.113 273.125 274.015 274.111

Mg' = molar MgO/(MgO + FeO(FB)).
*Major-element composition of 76503,7155 determined from electron microprobe analysis of impact glass.
-- = no value, ts = thin section (mount #), fbo = fused bead only, Anor = anorthosite, Gls = glass, Fsp = feldspatbic, NA = noritic anorthositc, Bx =
breccia,

AG = anorthositic gabbro, OI = olivine, CI = clasts, Plag = plagioclase, GIs Vn = glass veins, Troc = troctolitic.
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Table A3a. Impact-melt breccias: poikilitic or granular-matrix.

Sample 76503 76503 76503 76503 76503 76503 76503 76503 76503 72503 72503 72503 72503 72503
,7077 ,7090 ,7091 ,7103 ,7120 ,7153 ,7172 ,7187 ,7228 ,7025 ,7103 ,7110 ,7113 ,7127

Mass(mg) 18.39 17.77 10.99 13.39 16.64 17.59 12.17 15.16 12.45 29.95 60.62 96.88 95.01 75.2

Major-element Oxides

SiO 2 FB 46.0 46.4 46.7 46.4

TiO 2 FB 1.60 1.65 1.51 1.40

A1203 FB 17.1 17.2 17.6 18.4

Cr203 INAA 0.19 0.20 0.21 0.19

Cr203 FB 0.19 0.21 0.24 0.18
FeO INAA 9.06 8.64 8.56 9.07

FeO FB 9.27 9.03 8.6I 8.41

MnO FB 0.13 0.12 0.1I 0.11

MgO FB 13.2 l 2.9 13.0 12.4

CaO INAA 11.2 12.1 10.7 11.0

CaO FB 10.7 11.0 10.7 ll.3

Na20 INAA 0.69 0.65 0.64 0.66

Na20 FB 0.62 0.63 0.61 0.61

K20 FB 0.27 0.25 0.22 0.23

P205 FB 0.25 0.25 0.18 0.22

Total (FB) 99.3 99.7 99.6 99.7

Mg' 0.72 0.72 0.73 0.72

Trace Elements (uglg)
Sc 16.3 16.7 16.8 15.7

Cr 1283 1358 1464 1304

Co 11.6 10.4 11.1 47.8

Ni 69 76 83 511

Zn 18 17 --- 16

Rb 9.2 9.3 <13 8.4

Sr 178 165 170 186

Zr 560 510 450 437

Cs 0.35 0.22 0.23 0.28

Ba 373 353 314 321

La 36.0 32.8 27.3 31.8

Ce 95.I 86.0 71.6 82.3

Nd 53 49 39 49

Sm 16.7 15.5 13.0 14.5

Eu 2.05 1.98 1.87 1.91

Tb 3.27 3.19 2.63 2.89

Yb 11.7 10.9 9.75 10.3

Lu 1.59 1.50 1.32 1.40

Hf 13.2 12.1 11.1 11.3

Ta ! .7 1.5 1.4 1.5

Ir (ng/g) <6 <6 <7 14

Au (ng/g) <5 <9 <6 8.9

Th 5.7 5.2 4.3 5.0

U 1.5 1.6 1.3 1.4

Sample mount fbo fbo fbo fbo

INAA# 273.133 273.146 274.003 274.009

46.1 45.9 45.9 46.9 47.9 45.3 46.7 46.3 46.0 46.7

1.46 1.48 1.56 1.56 1.26 1.81 1.67 1.54 1.65 1.50

16.7 19.3 17.2 18.0 17.9 21.2 17.7 18.8 20.4 19.0

0.19 0.19 0.20 0.19 0.21 0.12 0.20 0.19 0.19 0.20

0.18 0.19 0.22 0.20 0.22 0.16 0.19 0.21 0.18 0.19

9.33 8.63 9.30 8.62 7.60 7.15 9.05 8.66 9.30 8.90

9.01 8.70 9.51 8.75 7.92 7.89 8.93 8.32 7.64 8.65

0.12 0.12 0.13 0.10 0.I1 0.10 0.12 0.12 0.11 0.12

14.6 11.3 13.2 12.4 12.8 9.21 12.3 12.1 10.5 11.5

10.9 11.7 II.0 10.5 10.5 14.7 11.9 12.0 12.0 11.5

10.5 11.9 10.8 10.4 10.9 12.7 11.1 11.4 12.4 11.2

0.65 0.64 0.65 0.67 0.61 0.52 0.68 0.60 0.60 0.64

0.61 0.59 0.61 0.66 0.60 0.55 0.70 0.58 0.60 0.65

0.23 0.19 0.17 0.25 0.22 0.08 0.18 0.23 0.23 0.19

0.25 0.24 0.23 0.23 0.21 0.38 0.25 0.22 0.23 0.23

99.7 99.9 99.5 99.5 100.0 99.4 99.9 99.8 100.0 100.0

0.74 0.70 0.71 0.72 0.74 0.68 0.71 0.72 0.71 0.70

15.3 16.1 16.0

1316 1286 1359

43.2 16.4 14.6

441 99 70

14 22 16

8.8 7.4 3.7

161 169 171

452 500 500

0.26 0.30 <0.13

340 350 326

32.1 33.0 35.0

83.5 85.5 90.8

49 52 52

14.8 15.2 16.1

1.88 1.88 1.93

3.00 3.03 3.14

10.6 10.8 11.1

1.43 1.48 1.52

12.2 11.7 12.3

1.5 1.5 1.6

11 4.4 <15

8.1 <7 <8

5.1 5.3 5.6

1.5 1.5 1.3

tbo fbo fbo

274.026 274.109 274.128

16.0 15.9 12.1 17.8 16.2 17.1 17.5

1306 1415 821 1341 1301 1326 1335

12.8 9.9 21.7 24.9 35.8 38.2 27.0

94 64 202 206 357 355 200

17 23 14 19 17 12 21

8.3 6.8 3.4 6.4 5.6 9.6 5.0

188 170 194 190 167 149 160

490 410 560 420 390 460 490

0.27 0.30 0.07 0.13 0.05 0.22 <0.2

341 297 407 339 297 346 382

32.5 28.1 37.1 33.1 28.8 29.8 37.1

84. I 73.0 96.2 85.3 74.0 75.8 95.4

52 41 57 48 46 43 54

15.1 12.9 16.5 15.2 13.0 13.5 16.6

2.00 1.91 2.01 1.95 1.77 1.81 1.87

3.02 2.61 3.27 3.05 2.66 2.73 3.32

10.8 9.55 11.2 10.8 9.34 9.82 11.5

1.48 1.31 1.51 1.48 1.29 1.34 1.55

12.0 10.2 14.0 I 1.7 10.2 11.6 13.0

1.6 1.2 1.7 1.5 1.5 1.7 1.7

<11 <3 5.5 6.7 9.6 8.8 6.0

<10 -- <6 3.6 5.4 7.3 <6

5.1 4.4 6.6 5.0 4.52 4.96 6.0

1.4 1.3 1.8 1.3 1.19 1.48 1.6

fbo tbo ts7A ts9C tsl0C tsl0D tsl 1D

274.143 277.104 280.025 282.002 282.009 282.012 282.026

ts = thin section (mount #); fbo = fused bead only; -- = no value; Mg' = molar MgO/(MgO + FeO)
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TABLE A3b, Impact-melt breccias: Incompatible-element rich.

Sample 76503 76503 76503 72503
,7097 ,7100 ,7133 ,7005

cl-r

Mass(mg) 24.04 29,12 11.88 17.12

72503 72503 72503 72503 72503 72443

,7026 ,7045 ,7069 ,7099 ,7126 ,7064
Ol-cl-r

22.09 23.21 18.90 16.65 69.10 21.16

Major-element Oxides

SiO 2 FB 46.0 47.4

TiO 2 FB 1.90 2.14

A1203 FB 16.9 15.9

Cr203 INAA 0.18 0.20

Cr203 FB 0.19 0.20

FeO INAA 9.40 9.95

FeO FB 9.35 10,2

MnO FB 0.12 0.12

MgO FB 12.1 10.9

CaO INAA I08 11.3

CaO FB 10,9 10.9

Na20 INAA 0.76 0.89

Na20 FB 0.77 0.82

K20 FB 0.26 0.32

P2Os FB 0.29 0.36

Total (FB) 98.7 99.2

Mg' 0.70 0.66

Trace Elements (ug/g)
Sc 17.6 21.4

Cr 1261 1344

Co 26.7 18.6

Ni I 10 70

Zn 23 24

Rb 9.0 11.3

Sr 140 187

Zr 500 680

Cs 0.30 0.47

Ba 380 527

La 36.4 50.3

Ce 93.8 130

Nd 55 76

Sm 165 22.5

Eu 1.78 2.14

Tb 3.24 451

Yb 11.5 15.9

Lu 1.59 2.14

llf 12.2 17.6

Ta 1,5 2.2

lr (ng/g) < 12 <7

Au (ng/g) <12 <11

Th 5.4 7.8

U .... 1.6 2.1

Sample mount ts7B tslD
INAA # 274,003 274.006

48.9 47.2 44,4 49.2 47.1 47.0 47.0 46.9

1.35 !.73 1.82 1.10 0,97 1.78 0.92 2.63

18.1 I6.7 13.4 18.8 19.4 17.5 19.3 16.4

0.17 0.24 0.19 0.20 0,21 0.20 0.25 0.16

0.19 0.22 0.19 0,18 0,23 0.20 0,24 0.16

8.84 10.1 12.7 9.35 8.75 9.89 9.08 11.8

9.02 I0.l t3.0 9.03 9,29 9.I8 9.49 11.4

0.14 0.14 0.15 0.12 0.12 0.I3 0.14 0.17

9.86 12.0 17A 7.97 8.92 11.4 9.42 9.83

10.4 11.5 9.40 I1,5 11.2 11.8 12.2 10.1

11.I 10.9 8.56 11.2 11.9 10.8 12.1 10.5

0.80 0.66 0.56 1.00 0.55 0.69 0.50 0,84

0.77 0.65 0.52 1.02 0.57 0.68 0.53 0.76

0.41 0.40 0.16 0.52 0.35 0.42 0.27 0.10

0.33 0.42 0.22 0.49 0.36 0.26 0.37 0.20

100.1 100.5 99.9 99.6 99.2 99.3 99,8 99.1

0.66 0.68 0.70 0.61 0.63 0,69 0.64 0,61

16.6 21.8 18.3 21.2 19,9 19.0 21.9 21.8

1191 1628 1279 1379 1449 1331 1683 1090

19.5 22.3 40.3 22.5 32.3 28.8 24.9 3t.8

161 160 410 120 240 230 120 210

22 25 13 23 30 23 22 17

15.0 12.0 8.0 16.0 13.3 17 9.0 <12

196 170 150 140 140 200 130 200

645 790 490 980 920 1010 590 800

0.58 0.37 0.14 0.90 0.51 0.66 0.29 0.24

591 426 403 933 601 579 432 440

46.6 55.7 41.8 71.0 65.8 53.8 45.0 41.1

120 146 108 !82 167 139 115 108

69 86 65 102 97 76 67 64

20,6 26.3 19.4 31.4 28.6 24.1 20.1 20.5

2.13 2.10 1.81 2.03 1.88 2.02 1.59 243

4.20 5.18 3.99 6.39 5.64 4.86 4.00 4,12

15.4 t6.7 14.0 22.8 19.3 17.6 13.8 14.6

2.09 2.25 1.94 3.10 2.56 239 1.86 1.97

16.4 18.5 13,3 24.4 22.0 24.8 14.7 t8.9

2.2 2.0 2.2 2.9 2.1 2.8 t .7 1.6

3.7 <6 8.1 2.7 9.7 8.3 2.1 7

2.3 <11 6.0 3.0 5.0 6 <5 <10

8.5 7.5 6.7 13.7 10.1 11.2 7.1 2.75

2.4 2.1 1.7 4.0 2.8 3.1 1.9 0.99

Poo ts7C ts8A tsSC ts9A ts 17F ts I 1C ts 15D

274.039 280.005 280.026 280.045 280.117 280.147 282.02 287.141

ts = thin section (mount #); fbo = fused bead only; cl-r = clast-rich; Ol = olivine.
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TABLEA3c.Impact-meltbrcccias:aphanitic.
Sample 7650372503725037250372443

,7152,7042 ,7104 ,7106 ,7059

Mass (mg) 14.34 37.67 57.91 36.81 24.08

Major-clemenl Oxides

SiO 2 FI3 48.5 463 46.3 46.2 46.8

TiO 2 FB 0.80 0.64 0.62 0.71 1.11

AI203 FB 18.1 22.9 21.6 22.6 19.1

Cr203 INAA 0.20 0.19 0.19 0,20 0.25

Cr203 FB 0.22 0.19 0,19 0.21 0.26

FcO INAA 8.49 7.08 6.78 7.49 9.27

FeO FB 8.50 6.59 6.73 7.05 8.86

MnO FB 0.I1 0.09 0.09 0.10 0.14

MgO FB 10.2 9.36 I 1.0 9.15 11.0

CaO INAA 11.2 13.5 12.6 13.1 11.7

CaO FB 118 13.1 12.3 13.0 11.6

Na20 INAA 0.68 0.52 0.45 0.49 0.55

Na20 FB 0.64 0.51 0.44 0.50 0.51

KzO FB 0.10 0.19 0.18 0.22 0.21

P205 FB 0.23 0.16 0.15 0.22 0.23

Total (FB) 99.3 100. I 99.7 99.9 99.9

Mg' 0.68 0.72 0.75 0.70 0.69

Trace Elements _glg)

Sc 16.4 14.4 12.5 16.0 20.7

Cr 1355 1313 1331 1392 1709

Co 16.6 24.5 27.8 22.1 29.0

Ni 71 128 176 124 210

Zn 21 9 10 18 19.9

Rb 5.9 8.7 6.8 7.3 8

Sr 152 146 144 166 160

Zr 535 420 299 488 460

Cs 0.25 026 0.22 0.28 0.23

Ba 368 298 283 354 298

La 36.8 30.2 24.7 38.0 36.2

Ce 95.3 78.0 62.9 97.0 93.2

Nd 50.2 46 37 58 54

Sm 16.5 13.8 10.8 16.8 16.9

Eu 1.39 1.44 1.35 1.53 1.65

Yb 3.38 2.77 2.15 3.33 3.33

Yb 12.1 9.56 7.84 11.7 11.3

Lu 1.68 1.31 1.07 1.60 1.53

llf 13.3 10.4 8.1 12.4 11.2

Ta 1.6 1.2 0.9 1.5 1A

lr (ng/g) < 11 3.6 5.1 3.4 4.0

Au (rig/g) <7 3.0 2.9 1.6 2.5

Th 6.8 4.8 4.0 5.8 5.3

U 2.0 1.3 1.I 1.6 1.5

Sample mount flgo tsSB ts9D ts I 0A ts 15C

INAA# 274.108 280,042 282,003 282.005 287.136

ts = thin section (mount #); fl0o = fused
head only; .... no value

Mg' = molar MgO/fMgO + FeO)

TABLE A3d. Other impact-melt breccias.

76503 76503 76503 76503 76503 76503 72503 72503 72443
,7003 ,7058 ] ,7139 ,7175 ,70252 ,7190 ,7102 ,71233 ,70464

28.56 24.94 14.82 9.00 10.94 13.06 70.99 30.95 28.71

Major-element Oxides

45.8 45.5 46.6

0.33 1.09 1.28

23.9 24.3 17A

0.19 0.12 0.21

0.18 0.10 0.22

6.77 6.92 8.43

6.47 6.60 7,59

0.10 0.09 0.12

8.63 7.90 15.1

13.5 13,4 10.3

13.7 14.1 10.8

0.53 0.62 0.53

0.50 0.61 0.51

0.21 0,30 0.17

0.05 0.19 0.11

99.9 100,7 99,9

0.70 0.68 0.78

Trace Elements (uglg)

13.5 11.0 [5.2

1335 815 1428

30.0 29.7 21.9

259 369 173

<19 9 18

8.4 8,0 6.7

137 182 147

107 427 347

0.41 0.37 0.25

130 314 270

8.21 30.0 25.3

20.9 76.9 65.2

14 46.5 38.1

3.51 13.7 11.7

0.88 1.72 1.57

0.79 2.71 2,39

3.81 8.87 8.47

0.52 1.19 1.16

3.1 10.5 9.2

0.5 1.3 1.2

12.3 13 4.2

<6 4.2 <9

2.6 4.8 4.1

0.8 1.2 1,2

tsl9A tslC flgo

273.003 273114 274.045

46,6 52.3 45.3 46.9 43.8 46.9

104 0.60 0.88 0.84 0.34 0.90

19.3 21.1 16.1 18,1 23.1 14.0

0.18 0,15 0.20 0.23 0.54 0.20

0.18 0.12 0.19 0.26 0.20 0.20

7.32 7.76 8.02 9.30 5.52 11.7

7.13 6.15 7.68 9,1I 5.2t 11.3

0. I1 0.08 0.I0 0.14 0.07 0.15

13.8 3.87 19.0 11.7 14.0 16.0

11.4 11.4 9.62 11.7 11.7 10.3

I1.0 12.4 9.79 11.7 12.6 9.83

0.60 0.64 0.46 0.57 0.36 0.79

0.57 0.56 0.42 0.58 0.36 0.75

0.20 1.61 0.15 0.20 0.10 0.22

0.15 0.14 0.15 0.08 0.I0 0.07

I00,0 98.9 99.8 99.7 99.9 100.3

0.77 0,53 0.81 0.70 0.83 0.72

13.0 16.5 12.0 19,5 7.30 18.8

1199 1000 135l 1551 3720 1352

I 1.0 17.7 47.0 33.2 26.9 25.6

72 34 487 290 97 52

14 20 13 --- I 1 12

6.7 78.1 5.3 7.6 4.5 9.5

142 165 141 150 113 144

331 635 264 260 159 106

0.25 3.31 0.20 0.15 0.14 0297

243 699 203 220 199 98

22.1 45.7 18.9 19.3 16.2 7,77

57.5 117 48.9 49.6 40,6 20.6

31.7 65.6 27.8 29 22 13.1

10.1 19.2 8.64 8.80 6.83 4.11

1.49 1.55 1.25 1.60 1.20 1.30

2.05 4,17 1.75 1.72 1.27 0.89

7.37 19.3 6.36 6.57 4.75 3.2

1.03 2,68 0.88 0.90 0,66 0.46

8.1 17.4 6.9 6.6 4.2 2.9

1.1 2.5 0.9 0.8 0.5 0,36

<10 <5 9.8 7.0 3.6 <1.6

<11 <4 6.1 4.6 <3 <I .7

3.7 14.5 3.1 2.8 2.2 0,9

l.l 4.3 0,9 0.8 0.7 0.24

fbo tslB Poo ts9B tsl IB tsl4C

274.131 273.025 274146 282.001 282.022 287.123

ts = thin section (mount #); fbo = fused bead only; .... no value
1 76503,7058 is clast-rich.
2 76503,7025 has clasts of granophyre and monzogabbro.
3 72503,7123 has chromite clasts.

4 72443,7046 is a clast-free impact-melt rock.
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TABLE A4. Regolith breccias.

Sample 72503 76503 76503 76503 72503 76503 76503 76503 76503 76503 76503 76503
,7044 ,7047 ,7129 ,7219 ,7016 ,7020" ,7027 ,7033 ,7107 ,7114 ,7173 ,7176

Description RBx- clastic Br Gls RBx- Br GIs Aggl dark Br GIs gray dark RBx- dark

Aggl matrix matrix Aggl matrix matrix matrix matrix matrix Aggl matrix

Mass (mg) 28.41 16.90 21.11 51.51 24.92 15.53 15.89 20.57 6.71 13,17 8.64 8.62

Major-element Oxides

SiO 2 FB 46.0 44.5 45.0 45.1 45,2 43.4 42.0 43.9 43.8 45,2 45.1 44.3

TiO 2 FB 0.57 0.49 0.56 0.50 1.62 1.40 6.40 4.09 3.47 2.59 1.56 3.17

AI203 FB 22.3 27.5 22.3 22.0 21.7 20.9 14.9 16.3 18.1 19.1 21.0 18.5

Cr20 J INAA 0.20 0.08 0.14 0.15 0.22 0.20 0.37 0.30 0.27 0.28 0.21 0.28

Cr203 FB 0.20 0.I0 0,17 0.14 0,20 0.19 0.37 0.31 0.29 0.27 0.19 0.27
FeO INAA 7.32 4.03 5,50 6.89 8.53 8.70 14.3 12.7 10,7 10.8 8.31 11.0

FeO FB 6.84 4.22 5.62 5.79 7.80 7.90 13,9 12.5 10.4 I0.I 7.73 10.0

MnO FB 0.07 0.07 0.07 0.08 0.11 0.10 0.18 0.16 0.15 0.11 0.09 0,12

MgO FB 11.1 6.02 13.5 13.7 9.84 12.7 9.99 9.34 11.5 10.1 12.0 11.1

CaO INAPt 12.6 15.9 12.4 11.8 12.6 12.7 11.5 12.0 11.4 12.4 12.6 12.4

CaO FB 12.8 15.8 12.7 12.5 12.9 12.6 11.4 11.8 12.0 12.0 12.2 11.7

Na20 INAA 0,39 0.46 0.45 0.41 0.46 0,35 0.40 0.77 0.39 0.52 0.37 0.39

Na20 FB 0.37 0.44 0.43 0.34 0.42 0.28 0.38 0.75 0.36 0.52 0.33 0.37

K20 FB 0.16 0.11 0.12 0,11 0.15 0.08 0.09 0.09 0.08 0.16 0.10 0.10

P205 FB 0.07 0.12 0.08 0.04 0.08 0.08 0,05 0.07 0,05 0.08 0.04 0,04

Total (FB) 100.4 99.4 100.1 100.4 100.0 99.5 99.7 99.2 100. I 100.3 100.4 99.7

Mg' 0.74 0.72 0.81 0,81 0.69 0.74 0.56 0.57 0.66 0.64 0.73 0,66

Trace Elements (ug/g)
Sc

Cr

Co

Ni

Zn

Rb

Sr

Zr

Cs

Ba

La

Ce

Nd

Sm

Eu

Tb

Yb

Lu

Hf

Ta

Ir (ng/g)

Au (ng/g)

Th

U

Sample mount
INAA #

12.5 6.58 8.39 I0.0 18.4 15.2 45.8 30.0 29.4 22.8 17.8 28.2

1344 533 985 1055 1502 1348 2544 2069 1881 1922 1457 1908

34.2 21.7 20.1 42.7 28.3 36.6 32.2 31.3 31.6 34.9 29,8 37.8

400 288 113 242 240 316 230 134 140 267 211 388

10 7 7 I1 21 24 31 100 62 57 31 47

62 2.6 5.8 6.7 8.0 4.9 <30 <12 <13 8.5 <10 4.6

145 170 177 149 170 129 200 190 90 178 144 170

163 175 409 163 270 347 210 160 <200 247 143 168

0.20 0.18 0.13 0,22 0,18 0.11 <0.8 <0,4 <0.5 0.24 0.13 0.12

[42 123 126 145 197 122 140 112 94 194 1 I5 123

11.4 12.0 I1.1 11.7 17.2 14.3 8.57 8.44 7.33 15.9 8.99 9.66

30,1 31.6 28.3 30.3 45.2 48.2 23.3 23.6 20.5 42.0 23.8 26.2

16.6 t8.7 16.0 18.3 26 31.4 19.0 13.3 15.0 29.0 13.7 16.6

5.19 5£3 5.04 5.24 8.38 11.63 6,95 5.63 5.20 8.04 4.58 5.86

1.04 1.08 1.19 1.11 1.35 I.I I 1.45 t.62 1.23 1.55 1.10 1.26

1.08 1.11 1.06 1.10 1.75 3.37 1.62 1.27 1.24 1.69 1.04 1.33

4,14 3.92 4.25 4.36 6.14 19,9 5.87 4.23 4.27 5.95 3.67 4.89

0,58 0.52 0.60 0.60 0.85 2,37 0.85 0.60 0.59 0,82 0.50 0.69

4.0 4.2 10.0 4.2 6.8 10 6.3 4.6 4.4 6.6 3.8 4.8

0.6 0.5 0.5 0.6 0.9 5.8 0.9 0.7 0.7 0.9 0.5 0.8

14 8.9 2.3 5.6 7.0 14 <19 5.3 <11 13 6.0 18

5.9 7.1 <6 2.6 3.3 3.4 <10 <12 <7 4.4 2.3 3.2

2.2 2.0 2.0 2.3 3.0 37 I.I 1.1 1.2 2.6 1.4 1.6

0_6 0.6 0.6 0.6 0.9 10 <1.2 0.27 0.33 0.8 0.4 0.41

tsl7A ts4A ts5D ts21D ts7D tslA fbo tsSA fbo fbo fbo fbo

280.044 273.103 274.035 277.025 280,016 273,020 273.027 273.033 274.013 274.020 274,129 274.132

ts = thin section (mount #); fbo = fused bead only.

Mg' = molar MgO/(MgO + FeO).
* Major-element composition of 76503,7020 measured by EMP of agglutinate glass.

Samples in the first fuur columns are essentially free of mare components.
Br Gls = brown, glassy matrix, based on observation of thin section; Aggl = agglutinate; RBx-Aggl = composite regolith Bx / Aggl.
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TABLE A5. Basaltic and orange-glass fragments.

Basaltic Fragments Orange Glass

Sample 76503 76503 76503 76503 76503* 76503 76503 76503 76503 76503

,7101 ,7134 ,7137 ,7014 ,7012 ,7040 ,7024 ,7043 ,7178 ,7188

Description IIm Bas llm Bas llm Bas Mbas Mbas Bx/ VLT Vitro- Reg Reg Reg Bx-

coarse coarse fine Bx vitrophyre Bas phyre Bx Bx Agglut

Mass (mg) 30.15 9.89 7.91 13.40 23.50 18.28 24.59 21.07 9.95 11.53

Major-element Oxides

SiO 2 FB 38.1 39.8 38.9 41.6 43.58 48.4 38.3 40.4 38.4 39.6

TiO 2 FB 12.1 11.1 13.3 8.13 5.83 0.68 8.65 7.94 8.94 8.26

AI20 _ FB I0.0 12.3 10.1 13.1 12.0 15.5 5.69 9.16 6.12 7.86

Cr203 INAA 0.63 0.49 0.61 0.38 0.51 0.40 0.69 0.58 0.71 0.65

Cr20 _ FB 0.58 0.49 0.60 0.42 0.49 0.40 0.71 0.60 0.72 0.64

FeO INAA 17,8 16.3 19.7 15.6 17.9 12.1 23,2 19.8 23.3 21.6

FeO FB 17.1 15.8 19.3 15.2 17.8 10.5 22.5 19.5 22.4 21.0

MnO FB 0.23 0.21 0.26 0.22 0.25 0.18 0.29 0.24 0.27 0,24

MgO FB 10.7 9.62 5.74 8.37 8,65 8.43 15.0 12.6 15.0 13.7

CaO INAA 10.5 10.7 I 1.2 11.4 11.4 13.1 6.6 8.9 7.7 8.4

CaO FB 9.93 10.5 11.3 11.8 11.3 13.8 7.12 9.02 7.43 8.27

Na20 INAA 0.41 0.50 0.45 0.54 0.32 0.38 0.41 0.64 0.42 0.46

Na20 FB 0.40 0.49 0.45 0.51 0.31 0.40 0.38 0.63 0.38 0.45

K20 FB 0.02 0.02 0.06 0.10 0.05 0.79 0.07 0.11 0.07 0.08

P205 FB 0.02 0.02 0. I 1 0.06 0.04 0.05 0.03 0.05 0.04 0.03

Total (FB) 99.3 100.4 100. l 99.5 100.3 99.0 98.8 100.3 99.7 100.1

Mg' 0.53 0.52 0.35 0.50 0.46 0.59 0.54 0.54 0.54 0.54

Trace Elements (ug/g)

Sc 72.9 68,2 88.8 62.8 68.2 61,8 44.8 48.5 47.2 45.7

Cr 4326 3321 4183 2570 3470 2764 4755 3967 4824 4453

Co 22.2 19.4 20.6 26.0 27.1 37.0 95 54 67 61

Ni <70 <130 <190 <300 <180 260 790 180 I10 <260

Zn ......... 196 ...... 59 322 297 319

Rb 5.3 <12 <18 <30 <30 31 <12 <17 <16 <30

Sr 118 160 190 <400 <400 <170 179 230 180 260

Zr 78 <300 230 <600 150 <300 156 230 180 190

Cs <0.2 <0.4 <0.7 <0.7 <0.6 1.48 <0.2 0.16 <0.4 0.30

Ba <120 <70 76 88 77 264 60 114 93 84

La 1.14 0.97 %17 8.58 4.87 2.18 5.53 8.16 6.00 6.37

Ce 4.1 4.2 22.0 23.9 15.3 6.4 16.8 23.2 19.0 20.0

Nd <30 <20 22.0 16.0 10 <15 15.0 26.0 14.6 19.0

Sm 2.19 2.11 8.87 9.01 5.79 1.36 6.26 7,64 6.69 6,60

Eu 1.11 1.33 1.70 1.71 1.15 0.57 1.74 1.79 1.85 1.78

Tb 0.71 0.66 2,27 2.19 1.50 0.37 1.35 1.67 1.53 1.50

Yb 3.40 3.23 8.88 7.95 5.47 2.09 3.88 5.51 4.14 4.22

Lu 0.50 0.47 1.21 1.12 0.78 0.30 0.52 0.74 0.56 0.59

Hf 3.7 3.3 8.0 8.1 5.0 0.8 5.4 6.7 5.9 6.0

Ta 0.9 0.9 1.8 1.3 0.8 <0.3 1.0 1.1 1.1 1.0

Ir (ng/g) <10 <13 <40 <30 <16 <8 33 <11 <14 <15

Au (rig/g) <19 <11 <12 <13 <8 <6 7.3 <12 <12 <7

Th <0. I <0.3 0,4 0.9 0.35 0.2 0.4 1,1 0.4 0.5

U <0.9 <0.7 <1.7 0.3 <0.4 <0.7 <0.6 <1.5 <1.5 <1.5

Sample mount ts6A fbo foo fbo tsl9D ts6B ts2A ts2B lbo fbo

INAA # 274.007 274,04 274.043 273.014 273.012 273.040 273.024 273.043 274.134 274.144

ts = thin section (mount #); [bo = fused bead only.
--- = no value.

Mg' = molar MgO/(MgO + FeO).
*Major-element analysis of 76503,7012 by electron microprobe of glass.

llm = ilmenite; Bas = basalt; Bx = breccia; Mbas = mare basalt; Reg = regolith; VLT = very-low-Ti;
Agglut = agglutinate; coarse = 0.1 mm-l,2 mm grain size; fine = grain size <0.2 mm.
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